An Introduction to Cryptology

A mathematically oriented overview of the field of cryptology. The book discusses conventional cryptosystems from Caesar to DES, with emphasis on the theory of shift register sequences.--

An Introduction to Cryptology

A mathematically oriented overview of the field of cryptology. The book discusses conventional cryptosystems from Caesar to DES, with emphasis on the theory of shift register sequences.--

Introduction to Cryptology

This book provides an introduction to cryptology, surveying the chief cryptographic algorithms that have been developed and examining the latest public key cryptosystems and IBM's Data Encryption Standard.

Introduction to Cryptology

This book provides an introduction to cryptology, surveying the chief cryptographic algorithms that have been developed and examining the latest public key cryptosystems and IBM's Data Encryption Standard.

Introduction to Cryptography

This book covers key concepts of cryptography, from encryption and digital signatures to cryptographic protocols, presenting techniques and protocols for key exchange, user ID, electronic elections and digital cash.

Introduction to Cryptography

This book covers key concepts of cryptography, from encryption and digital signatures to cryptographic protocols, presenting techniques and protocols for key exchange, user ID, electronic elections and digital cash. Advanced topics include bit security of one-way functions and computationally perfect pseudorandom bit generators. Assuming no special background in mathematics, it includes chapter-ending exercises and the necessary algebra, number theory and probability theory in the appendix. This edition offers new material including a complete description of the AES, a section on cryptographic hash functions, new material on random oracle proofs, and a new section on public-key encryption schemes that are provably secure against adaptively-chosen-ciphertext attacks.

Introduction to Cryptography

This book explains the basic methods of modern cryptography.

Introduction to Cryptography

This book explains the basic methods of modern cryptography. It is written for readers with only basic mathematical knowledge who are interested in modern cryptographic algorithms and their mathematical foundation. Several exercises are included following each chapter. From the reviews: "Gives a clear and systematic introduction into the subject whose popularity is ever increasing, and can be recommended to all who would like to learn about cryptography." --ZENTRALBLATT MATH

Complexity Theory and Cryptology

This book is written for undergraduate and graduate students of computer science, mathematics, and engineering, and can be used for courses on complexity theory and cryptology, preferably by stressing their interrelation.

Complexity Theory and Cryptology

Modern cryptology increasingly employs mathematically rigorous concepts and methods from complexity theory. Conversely, current research topics in complexity theory are often motivated by questions and problems from cryptology. This book takes account of this situation, and therefore its subject is what may be dubbed "cryptocomplexity'', a kind of symbiosis of these two areas. This book is written for undergraduate and graduate students of computer science, mathematics, and engineering, and can be used for courses on complexity theory and cryptology, preferably by stressing their interrelation. Moreover, it may serve as a valuable source for researchers, teachers, and practitioners working in these fields. Starting from scratch, it works its way to the frontiers of current research in these fields and provides a detailed overview of their history and their current research topics and challenges.

Cryptography A Very Short Introduction

ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly.

Cryptography  A Very Short Introduction

This book is a clear and informative introduction to cryptography and data protection - subjects of considerable social and political importance. It explains what algorithms do, how they are used, the risks associated with using them, and why governments should be concerned. Important areas are highlighted, such as Stream Ciphers, block ciphers, public key algorithms, digital signatures, and applications such as e-commerce. This book highlights the explosive impact of cryptography on modern society, with, for example, the evolution of the internet and the introduction of more sophisticated banking methods. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.

Cryptology

The art & science of secret writing. Provides ideal methods to solve the problems of transmitting information secretly & securely.

Cryptology

Cryptology, the art and science of 'secret writing', provides ideal methods to solve the problems of transmitting information secretly and securely. The first half of this book studies and analyzes classical cryptosystems. The second half looks at the exciting new directions of public-key cryptology. The book is fun to read, and the author presents the material clearly and simply. Many exercises and references accompany each chapter.

An Introduction to Mathematical Cryptography

The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography.

An Introduction to Mathematical Cryptography

This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, and digital signatures; fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; an in-depth treatment of important cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. The second edition of An Introduction to Mathematical Cryptography includes a significant revision of the material on digital signatures, including an earlier introduction to RSA, Elgamal, and DSA signatures, and new material on lattice-based signatures and rejection sampling. Many sections have been rewritten or expanded for clarity, especially in the chapters on information theory, elliptic curves, and lattices, and the chapter of additional topics has been expanded to include sections on digital cash and homomorphic encryption. Numerous new exercises have been included.

Codes An Introduction to Information Communication and Cryptography

This book is an integrated introduction to the mathematics of coding, that is, replacing information expressed in symbols, such as a natural language or a sequence of bits, by another message using (possibly) different symbols.

Codes  An Introduction to Information Communication and Cryptography

Many people do not realise that mathematics provides the foundation for the devices we use to handle information in the modern world. Most of those who do know probably think that the parts of mathematics involvedare quite ‘cl- sical’, such as Fourier analysis and di?erential equations. In fact, a great deal of the mathematical background is part of what used to be called ‘pure’ ma- ematics, indicating that it was created in order to deal with problems that originated within mathematics itself. It has taken many years for mathema- cians to come to terms with this situation, and some of them are still not entirely happy about it. Thisbookisanintegratedintroductionto Coding.Bythis Imeanreplacing symbolic information, such as a sequence of bits or a message written in a naturallanguage,byanother messageusing (possibly) di?erentsymbols.There are three main reasons for doing this: Economy (data compression), Reliability (correction of errors), and Security (cryptography). I have tried to cover each of these three areas in su?cient depth so that the reader can grasp the basic problems and go on to more advanced study. The mathematical theory is introduced in a way that enables the basic problems to bestatedcarefully,butwithoutunnecessaryabstraction.Theprerequisites(sets andfunctions,matrices,?niteprobability)shouldbefamiliartoanyonewhohas taken a standard course in mathematical methods or discrete mathematics. A course in elementary abstract algebra and/or number theory would be helpful, but the book contains the essential facts, and readers without this background should be able to understand what is going on. vi Thereareafewplaceswherereferenceismadetocomputeralgebrasystems.

Probabilistic and Statistical Methods in Cryptology

Cryptology nowadays is one of the most important areas of applied mathematics, building on deep results and methods from various areas of mathematics. This text is devoted to the study of stochastic aspects of cryptology.

Probabilistic and Statistical Methods in Cryptology

Cryptology nowadays is one of the most important areas of applied mathematics, building on deep results and methods from various areas of mathematics. This text is devoted to the study of stochastic aspects of cryptology. Besides classical topics from cryptology, the author presents chapters on probabilistic prime number tests, factorization with quantum computers, random-number generators, pseudo-random-number generators, information theory, and the birthday paradox and meet-in-the-middle attack. In the light of the vast literature on stochastic results relevant for cryptology, this book is intended as an invitation and introduction for students, researchers, and practitioners to probabilistic and statistical issues in cryptology.

A Classical Introduction to Cryptography

This book is also suitable for researchers and practitioners in industry.

A Classical Introduction to Cryptography

A Classical Introduction to Cryptography: Applications for Communications Security introduces fundamentals of information and communication security by providing appropriate mathematical concepts to prove or break the security of cryptographic schemes. This advanced-level textbook covers conventional cryptographic primitives and cryptanalysis of these primitives; basic algebra and number theory for cryptologists; public key cryptography and cryptanalysis of these schemes; and other cryptographic protocols, e.g. secret sharing, zero-knowledge proofs and undeniable signature schemes. A Classical Introduction to Cryptography: Applications for Communications Security is designed for upper-level undergraduate and graduate-level students in computer science. This book is also suitable for researchers and practitioners in industry. A separate exercise/solution booklet is available as well, please go to www.springeronline.com under author: Vaudenay for additional details on how to purchase this booklet.

An Introduction to Cryptography

With an extensive index and a list of symbols for easy reference, An Introduction to Cryptography is the essential fundamental text on cryptography.

An Introduction to Cryptography

INTRODUCTION FOR THE UNINITIATED Heretofore, there has been no suitable introductory book that provides a solid mathematical treatment of cryptography for students with little or no background in number theory. By presenting the necessary mathematics as needed, An Introduction to Cryptography superbly fills that void. Although it is intended for the undergraduate student needing an introduction to the subject of cryptography, it contains enough optional, advanced material to challenge even the most informed reader, and provides the basis for a second course on the subject. Beginning with an overview of the history of cryptography, the material covers the basics of computer arithmetic and explores complexity issues. The author then presents three comprehensive chapters on symmetric-key cryptosystems, public-key cryptosystems, and primality testing. There is an optional chapter on four factoring methods: Pollard's p-1 method, the continued fraction algorithm, the quadratic sieve, and the number field sieve. Another optional chapter contains detailed development of elliptic curve cryptosystems, zero-knowledge, and quantum cryptography. He illustrates all methods with worked examples and includes a full, but uncluttered description of the numerous cryptographic applications. SUSTAINS INTEREST WITH ENGAGING MATERIAL Throughout the book, the author gives a human face to cryptography by including more than 50 biographies of the individuals who helped develop cryptographic concepts. He includes a number of illustrative and motivating examples, as well as optional topics that go beyond the basics presented in the core data. With an extensive index and a list of symbols for easy reference, An Introduction to Cryptography is the essential fundamental text on cryptography.

Understanding Cryptography

This is a suitable textbook for graduate and advanced undergraduate courses and also for self-study by engineers.

Understanding Cryptography

Cryptography is now ubiquitous – moving beyond the traditional environments, such as government communications and banking systems, we see cryptographic techniques realized in Web browsers, e-mail programs, cell phones, manufacturing systems, embedded software, smart buildings, cars, and even medical implants. Today's designers need a comprehensive understanding of applied cryptography. After an introduction to cryptography and data security, the authors explain the main techniques in modern cryptography, with chapters addressing stream ciphers, the Data Encryption Standard (DES) and 3DES, the Advanced Encryption Standard (AES), block ciphers, the RSA cryptosystem, public-key cryptosystems based on the discrete logarithm problem, elliptic-curve cryptography (ECC), digital signatures, hash functions, Message Authentication Codes (MACs), and methods for key establishment, including certificates and public-key infrastructure (PKI). Throughout the book, the authors focus on communicating the essentials and keeping the mathematics to a minimum, and they move quickly from explaining the foundations to describing practical implementations, including recent topics such as lightweight ciphers for RFIDs and mobile devices, and current key-length recommendations. The authors have considerable experience teaching applied cryptography to engineering and computer science students and to professionals, and they make extensive use of examples, problems, and chapter reviews, while the book’s website offers slides, projects and links to further resources. This is a suitable textbook for graduate and advanced undergraduate courses and also for self-study by engineers.

Cryptography

Nigel Smartâ¬"s Cryptography provides the rigorous detail required for advanced cryptographic studies, yet approaches the subject matter in an accessible style in order to gently guide new students through difficult mathematical topics.

Cryptography

Nigel Smartâ¬"s Cryptography provides the rigorous detail required for advanced cryptographic studies, yet approaches the subject matter in an accessible style in order to gently guide new students through difficult mathematical topics.

Cryptology

Cryptology


CryptoSchool

This book offers an introduction to cryptology, the science that makes secure communications possible, and addresses its two complementary aspects: cryptography—--the art of making secure building blocks—--and cryptanalysis—--the art ...

CryptoSchool

This book offers an introduction to cryptology, the science that makes secure communications possible, and addresses its two complementary aspects: cryptography—--the art of making secure building blocks—--and cryptanalysis—--the art of breaking them. The text describes some of the most important systems in detail, including AES, RSA, group-based and lattice-based cryptography, signatures, hash functions, random generation, and more, providing detailed underpinnings for most of them. With regard to cryptanalysis, it presents a number of basic tools such as the differential and linear methods and lattice attacks. This text, based on lecture notes from the author’s many courses on the art of cryptography, consists of two interlinked parts. The first, modern part explains some of the basic systems used today and some attacks on them. However, a text on cryptology would not be complete without describing its rich and fascinating history. As such, the colorfully illustrated historical part interspersed throughout the text highlights selected inventions and episodes, providing a glimpse into the past of cryptology. The first sections of this book can be used as a textbook for an introductory course to computer science or mathematics students. Other sections are suitable for advanced undergraduate or graduate courses. Many exercises are included. The emphasis is on providing reasonably complete explanation of the background for some selected systems.

Introduction to Cryptography

This book is an excellent reference, and I believe it would also be a good textbook for a course for mathematics or computer science majors..." -Neal Koblitz, The American Mathematical Monthly

Introduction to Cryptography

Cryptography is a key technology in electronic key systems. It is used to keep data secret, digitally sign documents, access control, etc. Therefore, users should not only know how its techniques work, but they must also be able to estimate their efficiency and security. For this new edition, the author has updated the discussion of the security of encryption and signature schemes and recent advances in factoring and computing discrete logarithms. He has also added descriptions of time-memory trade of attacks and algebraic attacks on block ciphers, the Advanced Encryption Standard, the Secure Hash Algorithm, secret sharing schemes, and undeniable and blind signatures. Johannes A. Buchmann is a Professor of Computer Science and Mathematics at the Technical University of Darmstadt, and the Associate Editor of the Journal of Cryptology. In 1985, he received the Feodor Lynen Fellowship of the Alexander von Humboldt Foundation. Furthermore, he has received the most prestigious award in science in Germany, the Leibniz Award of the German Science Foundation. About the first edition: It is amazing how much Buchmann is able to do in under 300 pages: self-contained explanations of the relevant mathematics (with proofs); a systematic introduction to symmetric cryptosystems, including a detailed description and discussion of DES; a good treatment of primality testing, integer factorization, and algorithms for discrete logarithms; clearly written sections describing most of the major types of cryptosystems....This book is an excellent reference, and I believe it would also be a good textbook for a course for mathematics or computer science majors..." -Neal Koblitz, The American Mathematical Monthly

Cryptography and Network Security

The book is divided into four parts: Cryptography, Security Systems, Network Security Applications, and System Security. Numerous diagrams and examples throughout the book are used to explain cryptography and network security concepts.

Cryptography and Network Security

This book is an introduction to fundamental concepts in the fields of cryptography and network security. Because cryptography is highly vulnerable to program errors, a simple testing of the cryptosystem will usually uncover a security vulnerability. In this book the author takes the reader through all of the important design and implementation details of various cryptographic algorithms and network security protocols to enforce network security. The book is divided into four parts: Cryptography, Security Systems, Network Security Applications, and System Security. Numerous diagrams and examples throughout the book are used to explain cryptography and network security concepts. FEATURES: Covers key concepts related to cryptography and network security Includes chapters on modern symmetric key block cipher algorithms, information security, message integrity, authentication, digital signature, key management, intruder detection, network layer security, data link layer security, NSM, firewall design, and more.

A Classical Introduction to Cryptography Exercise Book

TO CRYPTOGRAPHY EXERCISE BOOK Thomas Baignkres EPFL, Switzerland Pascal Junod EPFL, Switzerland Yi Lu EPFL, Switzerland Jean Monnerat EPFL, Switzerland Serge Vaudenay EPFL, Switzerland Springer - Thomas Baignbres Pascal Junod EPFL - I&C - ...

A Classical Introduction to Cryptography Exercise Book

TO CRYPTOGRAPHY EXERCISE BOOK Thomas Baignkres EPFL, Switzerland Pascal Junod EPFL, Switzerland Yi Lu EPFL, Switzerland Jean Monnerat EPFL, Switzerland Serge Vaudenay EPFL, Switzerland Springer - Thomas Baignbres Pascal Junod EPFL - I&C - LASEC Lausanne, Switzerland Lausanne, Switzerland Yi Lu Jean Monnerat EPFL - I&C - LASEC EPFL-I&C-LASEC Lausanne, Switzerland Lausanne, Switzerland Serge Vaudenay Lausanne, Switzerland Library of Congress Cataloging-in-Publication Data A C.I.P. Catalogue record for this book is available from the Library of Congress. A CLASSICAL INTRODUCTION TO CRYPTOGRAPHY EXERCISE BOOK by Thomas Baignkres, Palcal Junod, Yi Lu, Jean Monnerat and Serge Vaudenay ISBN- 10: 0-387-27934-2 e-ISBN-10: 0-387-28835-X ISBN- 13: 978-0-387-27934-3 e-ISBN- 13: 978-0-387-28835-2 Printed on acid-free paper. O 2006 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now know or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if the are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America.