Introduction to Spectral Theory

This book is designed to be used as a textbook, unlike the competitors which are either too fundamental in their approach or are too abstract in nature to be considered as texts. The authors' text fills a gap in the marketplace.

Introduction to Spectral Theory

The intention of this book is to introduce students to active areas of research in mathematical physics in a rather direct way minimizing the use of abstract mathematics. The main features are geometric methods in spectral analysis, exponential decay of eigenfunctions, semi-classical analysis of bound state problems, and semi-classical analysis of resonance. A new geometric point of view along with new techniques are brought out in this book which have both been discovered within the past decade. This book is designed to be used as a textbook, unlike the competitors which are either too fundamental in their approach or are too abstract in nature to be considered as texts. The authors' text fills a gap in the marketplace.

An Introduction to Spectral Theory

By introducing vital topics of abstract functional analysis where necessary, and using clear and simple proofs, the book develops an elegant presentation of the theory while integrating applications of basic real world problems involving ...

An Introduction to Spectral Theory

A brief and accessible introduction to the spectral theory of linear second order elliptic differential operators. By introducing vital topics of abstract functional analysis where necessary, and using clear and simple proofs, the book develops an elegant presentation of the theory while integrating applications of basic real world problems involving the Laplacian. Suitable for use as a self-contained introduction for beginners or as a one-semester student text; contains some 25 examples and 60 exercises, most with detailed hints.

An Introduction to Local Spectral Theory

This book is a modern treatment of a classical area of operator theory.

An Introduction to Local Spectral Theory

This book is a modern treatment of a classical area of operator theory. Written in a meticulous and detailed style, with the modern graduate student of analysis in mind, it contains many simplifications of existing literature. It is full of new results, as well as many illuminating examples. Carefully cross referenced throughout, it also includes an extensive list of the relevant literature.

Introduction to Spectral Theory

Introduction to Spectral Theory


Spectral Theory of Non Commutative Harmonic Oscillators An Introduction

This volume describes the spectral theory of the Weyl quantization of systems of polynomials in phase-space variables, modelled after the harmonic oscillator.

Spectral Theory of Non Commutative Harmonic Oscillators  An Introduction

This volume describes the spectral theory of the Weyl quantization of systems of polynomials in phase-space variables, modelled after the harmonic oscillator. The main technique used is pseudodifferential calculus, including global and semiclassical variants. The main results concern the meromorphic continuation of the spectral zeta function associated with the spectrum, and the localization (and the multiplicity) of the eigenvalues of such systems, described in terms of “classical” invariants (such as the periods of the periodic trajectories of the bicharacteristic flow associated with the eiganvalues of the symbol). The book utilizes techniques that are very powerful and flexible and presents an approach that could also be used for a variety of other problems. It also features expositions on different results throughout the literature.

A Guide to Spectral Theory

PhD students and researchers will also find this volume to be of interest, particularly the research directions provided in later chapters.

A Guide to Spectral Theory

This textbook provides a graduate-level introduction to the spectral theory of linear operators on Banach and Hilbert spaces, guiding readers through key components of spectral theory and its applications in quantum physics. Based on their extensive teaching experience, the authors present topics in a progressive manner so that each chapter builds on the ones preceding. Researchers and students alike will also appreciate the exploration of more advanced applications and research perspectives presented near the end of the book. Beginning with a brief introduction to the relationship between spectral theory and quantum physics, the authors go on to explore unbounded operators, analyzing closed, adjoint, and self-adjoint operators. Next, the spectrum of a closed operator is defined and the fundamental properties of Fredholm operators are introduced. The authors then develop the Grushin method to execute the spectral analysis of compact operators. The chapters that follow are devoted to examining Hille-Yoshida and Stone theorems, the spectral analysis of self-adjoint operators, and trace-class and Hilbert-Schmidt operators. The final chapter opens the discussion to several selected applications. Throughout this textbook, detailed proofs are given, and the statements are illustrated by a number of well-chosen examples. At the end, an appendix about foundational functional analysis theorems is provided to help the uninitiated reader. A Guide to Spectral Theory: Applications and Exercises is intended for graduate students taking an introductory course in spectral theory or operator theory. A background in linear functional analysis and partial differential equations is assumed; basic knowledge of bounded linear operators is useful but not required. PhD students and researchers will also find this volume to be of interest, particularly the research directions provided in later chapters.

Spectral Theory

This textbook offers a concise introduction to spectral theory, designed for newcomers to functional analysis. Curating the content carefully, the author builds to a proof of the spectral theorem in the early part of the book.

Spectral Theory

This textbook offers a concise introduction to spectral theory, designed for newcomers to functional analysis. Curating the content carefully, the author builds to a proof of the spectral theorem in the early part of the book. Subsequent chapters illustrate a variety of application areas, exploring key examples in detail. Readers looking to delve further into specialized topics will find ample references to classic and recent literature. Beginning with a brief introduction to functional analysis, the text focuses on unbounded operators and separable Hilbert spaces as the essential tools needed for the subsequent theory. A thorough discussion of the concepts of spectrum and resolvent follows, leading to a complete proof of the spectral theorem for unbounded self-adjoint operators. Applications of spectral theory to differential operators comprise the remaining four chapters. These chapters introduce the Dirichlet Laplacian operator, Schrödinger operators, operators on graphs, and the spectral theory of Riemannian manifolds. Spectral Theory offers a uniquely accessible introduction to ideas that invite further study in any number of different directions. A background in real and complex analysis is assumed; the author presents the requisite tools from functional analysis within the text. This introductory treatment would suit a functional analysis course intended as a pathway to linear PDE theory. Independent later chapters allow for flexibility in selecting applications to suit specific interests within a one-semester course.

Introduction to Spectral Theory in Hilbert Space

The text then takes a look at the general theory of linear operators and spectral analysis of compact linear operators, including spectral decomposition of a compact selfadjoint operator, weakly convergent sequences, spectrum of a compact ...

Introduction to Spectral Theory in Hilbert Space

North-Holland Series in Applied Mathematics and Mechanics, Volume 6: Introduction to Spectral Theory in Hilbert Space focuses on the mechanics, principles, and approaches involved in spectral theory in Hilbert space. The publication first elaborates on the concept and specific geometry of Hilbert space and bounded linear operators. Discussions focus on projection and adjoint operators, bilinear forms, bounded linear mappings, isomorphisms, orthogonal subspaces, base, subspaces, finite dimensional Euclidean space, and normed linear spaces. The text then takes a look at the general theory of linear operators and spectral analysis of compact linear operators, including spectral decomposition of a compact selfadjoint operator, weakly convergent sequences, spectrum of a compact linear operator, and eigenvalues of a linear operator. The manuscript ponders on the spectral analysis of bounded linear operators and unbounded selfadjoint operators. Topics include spectral decomposition of an unbounded selfadjoint operator and bounded normal operator, functions of a unitary operator, step functions of a bounded selfadjoint operator, polynomials in a bounded operator, and order relation for bounded selfadjoint operators. The publication is a valuable source of data for mathematicians and researchers interested in spectral theory in Hilbert space.

Spectral and Scattering Theory for Ordinary Differential Equations

Examples include classical PDEs such as the heat and wave equations. Written by leading experts, this book provides a modern, systematic treatment of the theory.

Spectral and Scattering Theory for Ordinary Differential Equations

This graduate textbook offers an introduction to the spectral theory of ordinary differential equations, focusing on Sturm–Liouville equations. Sturm–Liouville theory has applications in partial differential equations and mathematical physics. Examples include classical PDEs such as the heat and wave equations. Written by leading experts, this book provides a modern, systematic treatment of the theory. The main topics are the spectral theory and eigenfunction expansions for Sturm–Liouville equations, as well as scattering theory and inverse spectral theory. It is the first book offering a complete account of the left-definite theory for Sturm–Liouville equations. The modest prerequisites for this book are basic one-variable real analysis, linear algebra, as well as an introductory course in complex analysis. More advanced background required in some parts of the book is completely covered in the appendices. With exercises in each chapter, the book is suitable for advanced undergraduate and graduate courses, either as an introduction to spectral theory in Hilbert space, or to the spectral theory of ordinary differential equations. Advanced topics such as the left-definite theory and the Camassa–Holm equation, as well as bibliographical notes, make the book a valuable reference for experts.

A Short Course on Spectral Theory

This book presents the basic tools of modern analysis within the context of the fundamental problem of operator theory: to calculate spectra of specific operators on infinite dimensional spaces, especially operators on Hilbert spaces.

A Short Course on Spectral Theory

This book presents the basic tools of modern analysis within the context of the fundamental problem of operator theory: to calculate spectra of specific operators on infinite dimensional spaces, especially operators on Hilbert spaces. The tools are diverse, and they provide the basis for more refined methods that allow one to approach problems that go well beyond the computation of spectra: the mathematical foundations of quantum physics, noncommutative K-theory, and the classification of simple C*-algebras being three areas of current research activity which require mastery of the material presented here.

Spectral Theory of Operators on Hilbert Spaces

This work is a concise introduction to spectral theory of Hilbert space operators.

Spectral Theory of Operators on Hilbert Spaces

This work is a concise introduction to spectral theory of Hilbert space operators. Its emphasis is on recent aspects of theory and detailed proofs, with the primary goal of offering a modern introductory textbook for a first graduate course in the subject. The coverage of topics is thorough, as the book explores various delicate points and hidden features often left untreated. Spectral Theory of Operators on Hilbert Spaces is addressed to an interdisciplinary audience of graduate students in mathematics, statistics, economics, engineering, and physics. It will also be useful to working mathematicians using spectral theory of Hilbert space operators, as well as for scientists wishing to apply spectral theory to their field. ​

Introduction to the Spectral Theory of Polynomial Operator Pencils

In this book, the author devotes most of his attention to the fundamental results of Keldysh on multiple completeness of the eigen.

Introduction to the Spectral Theory of Polynomial Operator Pencils

This monograph contains an exposition of the foundations of the spectral theory of polynomial operator pencils acting in a Hilbert space. Spectral problems for polynomial pencils have attracted a steady interest in the last 35 years, mainly because they arise naturally in such diverse areas of mathematical physics as differential equations and boundary value problems, controllable systems, the theory of oscillations and waves, elasticity theory, and hydromechanics. In this book, the author devotes most of his attention to the fundamental results of Keldysh on multiple completeness of the eigen.

Spectral Theory of Linear Operators

This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach algebras.

Spectral Theory of Linear Operators

This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach algebras. It presents a survey of results concerning various types of spectra, both of single and n-tuples of elements. Typical examples are the one-sided spectra, the approximate point, essential, local and Taylor spectrum, and their variants. Many results appear here for the first time in a monograph.

Spectral Theory of Random Schr dinger Operators

The interplay between the spectral theory of Schr|dinger operators and probabilistic considerations forms the main theme of these notes, written for the non-specialist reader and intended to provide a brief and elementaryintroduction to ...

Spectral Theory of Random Schr  dinger Operators

The interplay between the spectral theory of Schr|dinger operators and probabilistic considerations forms the main theme of these notes, written for the non-specialist reader and intended to provide a brief and elementaryintroduction to this field. An attempt is made to show basic ideas in statu nascendi and to follow their evaluation from simple beginnings through to more advanced results. The term "genetic" in the title refers to this proceedure. The author concentrates on 2 topics which, in the history of the subject, have been of major conceptual importance - on the one hand the Laplacian is a random medium and the left end of its spectrum (leading to large deviation problems for Brownian motion and the link to thenotion of entropy) and on the other, Schr|dinger operators with general ergodic potentials in one-dimensional space. Ideas and concepts are explained in the simplest, possible setting and by means of a few characteristic problems with heuristic arguments preceding rigorous proofs.