Mechanics of Elastic Composites

This is a comprehensive, reader-friendly treatment of the theory behind modern elastic composite materials.

Mechanics of Elastic Composites

This is a comprehensive, reader-friendly treatment of the theory behind modern elastic composite materials. The treatment includes recently developed results and methods drawn from research papers published in Eastern Europe that until now were unavailable in many western countries. Among the book's many notable features is the inclusion of more th

Mechanics of Elastic Composites

This is a comprehensive, reader-friendly treatment of the theory behind modern elastic composite materials.

Mechanics of Elastic Composites

This is a comprehensive, reader-friendly treatment of the theory behind modern elastic composite materials. The treatment includes recently developed results and methods drawn from research papers published in Eastern Europe that until now were unavailable in many western countries. Among the book's many notable features is the inclusion of more than 400 problems, many of which are solved at the end of the book. Mechanics of Elastic Composites is an outstanding textbook for graduate-level course work and a valuable reference for engineers and researchers. Developed over many years by leading experts in the field, this book will remain an important contribution to the literature for years to come.

Mechanics of Elastic Composites

This is a comprehensive, reader-friendly treatment of the theory behind modern elastic composite materials.

Mechanics of Elastic Composites

This is a comprehensive, reader-friendly treatment of the theory behind modern elastic composite materials. The treatment includes recently developed results and methods drawn from research papers published in Eastern Europe that until now were unavailable in many western countries. Among the book's many notable features is the inclusion of more than 400 problems, many of which are solved at the end of the book. Mechanics of Elastic Composites is an outstanding textbook for graduate-level course work and a valuable reference for engineers and researchers. Developed over many years by leading experts in the field, this book will remain an important contribution to the literature for years to come.

Mechanics of Elastic Composites

MECHANICAL ENGINEERING MECHANICS OF ELASTIC COMPOSITES
Composite materials play a fundamental role in many modern engineering
applications and have been the focus of much research and development in
recent years .

Mechanics of Elastic Composites

This is a comprehensive, reader-friendly treatment of the theory behind modern elastic composite materials. The treatment includes recently developed results and methods drawn from research papers published in Eastern Europe that until now were unavailable in many western countries. Among the book's many notable features is the inclusion of more th

Mechanics of Composite Materials

The text also looks into the photoelastic investigation of composites. Civil engineers, mechanical engineers, aerospace engineers, and people involved in the study of non-metallic materials will find the book invaluable.

Mechanics of Composite Materials

Composite Materials, Volume 2: Mechanics of Composite Materials deals with the prediction of the deformation behavior and strength of composite materials. The book discusses the basic concepts in micromechanics, definition of effective moduli, and the influence of the number of fibers through-the-thickness within a single composite layer on the effective properties. The text also describes the exact moduli of anisotropie laminates; the elastic behavior of composites; and the viscoelastic behavior and analysis of composite materials. The elastoplastic behavior of composites, and the application of statistical theories for the determination of thermal, electrical, and magnetic properties of heterogeneous materials are also considered. The book further tackles the finite deformations of ideal fiber-reinforced composites; wave propagation and vibrations in directionally reinforced composites; and the phenomenological anisotropie failure criterion. The text also looks into the photoelastic investigation of composites. Civil engineers, mechanical engineers, aerospace engineers, and people involved in the study of non-metallic materials will find the book invaluable.

Mechanics of Composite Materials

Graduate-level text assembles and interprets contributions to field of composite materials for a comprehensive account of mechanical behavior of heterogeneous media.

Mechanics of Composite Materials

Graduate-level text assembles and interprets contributions to field of composite materials for a comprehensive account of mechanical behavior of heterogeneous media. Subjects include macroscopic stiffness properties and failure characterization. 1979 edition.

Smart Composites

Smart Composites: Mechanics and Design addresses the current progress in the mechanics and design of smart composites and multifunctional structures.

Smart Composites

Smart Composites: Mechanics and Design addresses the current progress in the mechanics and design of smart composites and multifunctional structures. Divided into three parts, it covers characterization of properties, analyses, and design of various advanced composite material systems with an emphasis on the coupled mechanical and non-mechanical behaviors. Part one includes analyses of smart materials related to electrically conductive, magnetostrictive nanocomposites and design of active fiber composites. These discussions include several techniques and challenges in manufacturing smart composites and characterizing coupled properties, as well as the analyses of composite structures at various length and time scales undergoing coupled mechanical and non-mechanical stimuli considering elastic, viscoelastic (and/or viscoplastic), fatigue, and damage behaviors. Part two is dedicated to a higher-scale analysis of smart structures with topics such as piezoelectrically actuated bistable composites, wing morphing design using macrofiber composites, and multifunctional layered composite beams. The analytical expressions for characterization of the smart structures are presented with an attention to practical application. Finally, part three presents recent advances regarding sensing and structural health monitoring with a focus on how the sensing abilities can be integrated within the material and provide continuous sensing, recognizing that multifunctional materials can be designed to both improve and enhance the health-monitoring capabilities and also enable effective nondestructive evaluation. Smart Composites: Mechanics and Design is an essential text for those interested in materials that not only possess the classical properties of stiffness and strength, but also act as actuators under a variety of external stimuli, provide passive and active response to enable structural health monitoring, facilitate advanced nondestructive testing strategies, and enable shape-changing and morphing structures.

Principles of Composite Material Mechanics Second Edition

New and up-to-date information throughout the text brings modern engineering students everything they need to advance their knowledge of the evermore common composite materials.

Principles of Composite Material Mechanics  Second Edition

Extensively updated and maintaining the high standard of the popular original, Principles of Composite Material Mechanics, Second Edition reflects many of the recent developments in the mechanics of composite materials. It draws on the decades of teaching and research experience of the author and the course material of the senior undergraduate and graduate level classes he has taught. New and up-to-date information throughout the text brings modern engineering students everything they need to advance their knowledge of the evermore common composite materials. The introduction strengthens the book’s emphasis on basic principles of mechanics by adding a review of the basic mechanics of materials equations. New appendices cover the derivations of stress equilibrium equations and the strain–displacement relations from elasticity theory. Additional sections address recent applications of composite mechanics to nanocomposites, composite grid structures, and composite sandwich structures. More detailed discussion of elasticity and finite element models have been included along with results from the recent World Wide Failure Exercise. The author takes a phenomenological approach to illustrate linear viscoelastic behavior of composites. Updated information on the nature of fracture and composite testing includes coverage of the finite element implementation of the Virtual Crack Closure technique and new and revised ASTM standard test methods. The author includes updated and expanded material property tables, many more example problems and homework exercises, as well as new reference citings throughout the text. Requiring a solid foundation in materials mechanics, engineering, linear algebra, and differential equations, Principles of Composite Materials Mechanics, Second Edition provides the advanced knowledge in composite materials needed by today’s materials scientists and engineers.

Mechanics of Elastic plastic Fracture

This reduces the analysis of an average stress field in a macrocrack - containing
composite to a solution of an elastic problem for an anisotropic homogeneous
elastic body containing a mathematic slit . Using the known parameters of a ...

Mechanics of Elastic plastic Fracture


Mechanics of Curved Composites

This book is the frrst to focus on mechanical aspects of fibrous and layered composite material with curved structure.

Mechanics of Curved Composites

This book is the frrst to focus on mechanical aspects of fibrous and layered composite material with curved structure. By mechanical aspects we mean statics, vibration, stability loss, elastic and fracture problems. By curved structures we mean that the reinforcing layers or fibres are not straight: they have some initial curvature, bending or distortion. This curvature may occur as a result of design, or as a consequence of some technological process. During the last two decades, we and our students have investigated problems relating to curved composites intensively. These investigations have allowed us to study stresses and strains in regions of a composite which are small compared to the curvature wavelength. These new, accurate, techniques were developed in the framework of continuum theories for piecewise homogeneous bodies. We use the exact equations of elasticity or viscoelasticity for anisotropic bodies, and consider linear and non-linear problems in the framework of this continuum theory as well as in the framework of the piecewise homogeneous model. For the latter the method of solution of related problems is proposed. We have focussed our attention on self-balanced stresses which arise from the curvature, but have provided sufficient information for the study of other effects. We assume that the reader is familiar with the theory of elasticity for anisotropic bodies, with partial differential equations and integral transformations, and also with the Finite Element Method.

Mechanics of Composite Materials with MATLAB

This is a book for people who love mechanics of composite materials and ?

Mechanics of Composite Materials with MATLAB

This is a book for people who love mechanics of composite materials and ? MATLAB . We will use the popular computer package MATLAB as a matrix calculator for doing the numerical calculations needed in mechanics of c- posite materials. In particular, the steps of the mechanical calculations will be emphasized in this book. The reader will not ?nd ready-made MATLAB programs for use as black boxes. Instead step-by-step solutions of composite material mechanics problems are examined in detail using MATLAB. All the problems in the book assume linear elastic behavior in structural mechanics. The emphasis is not on mass computations or programming, but rather on learning the composite material mechanics computations and understanding of the underlying concepts. The basic aspects of the mechanics of ?ber-reinforced composite materials are covered in this book. This includes lamina analysis in both the local and global coordinate systems, laminate analysis, and failure theories of a lamina.

Manual on Experimental Methods for Mechanical Testing of Composites

Dr. Joseph D. Walter of Firestone Central Research 6. Whitney, R.J., "The Measurement of Volume Changes in Human Limbs, " J. Physiology, 121, 1-27 (1953).

Manual on Experimental Methods for Mechanical Testing of Composites

References Liquid-metal strain gages can be fabricated in either single- or delta-rosette configurations. Their main advantages are their low stiffness (essential for 1. Beatty, M.F. and Chewning, S. W., "Numerical Analysis of the Reinforcement Effect of a Strain Gage Applied to a Soft use on composites with soft, elastomeric matrices) Material," Int. J. Eng. Sci., 17, 907-915 (1979). and high elongation (at least 50 percent). Their prin 2. Pugin, V.A., "Electrical Strain Gauges for Measuring Large cipal disadvantages are a short shelf life and a Deformations," Soviet Rubber Industry, 19 (1), 23-26 (1960). nonlinear calibration curve. 3. Janssen, M.L. and Walter, J.D., "Rubber Strain Measurements in Bias, Belted Bias and Radial Ply Tires," J. Coated Fibrous Mat., 1, 102-117 (1971). 4. Patel, H.P., Turner, J.L., and Walter, J.D., "Radial Tire Cord-Rubber Composite," Rubber Chem. and Tech., 49, Acknowledgments 1095-1110 (1976). 5. Stone, J.E., Madsen, N.H., Milton, J.L., Swinson, W.F., and Turner, J.L., "Developments in the Design and Use of Liquid-Metal Strain Gages," EXPERIMENTAL MECHANICS, 23, The author acknowledges helpful suggestions by 129-139 (1983). Dr. Joseph D. Walter of Firestone Central Research 6. Whitney, R.J., "The Measurement of Volume Changes in Human Limbs, " J. Physiology, 121, 1-27 (1953).

Mechanics of Textile and Laminated Composites

Researchers, designers and engineers working with composite materials and structures will find this book an invaluable addition to their libraries.

Mechanics of Textile and Laminated Composites

Mechanics of Textile and Laminated Composites is in three parts. The first part (Chapters 1 and 2) covers the fundamental issues of 3-D theory of elasticity and presents the theory of elasticity of an anisotropic body with comprehensive analysis of its specific cases. The second part (Chapters 3-5) presents the theoretical and experimental characterization of the elastic properties of unidirectional, textile and layered composite materials. The final part (Chapters 6 and 7) addresses the problems of 3-D stress analysis in laminated and textile composite structures. Major emphasis is placed on textile composites, perhaps the most complex and at the same time most promising group of composite materials. One of the most important features of this book is that it provides accurate and efficient 3-D analysis of laminated and textile reinforced structures, using novel methods. It has become more and more evident in recent years that, in many practical design situations, such full-scale 3-D analyses are required. Researchers, designers and engineers working with composite materials and structures will find this book an invaluable addition to their libraries.

Micromechanics

A comprehensive overview is given in this book towards a fundamental understanding of the micromechanics of the overall response and failure modes of advanced materials, such as ceramics and ceramic and other composites.

Micromechanics

A comprehensive overview is given in this book towards a fundamental understanding of the micromechanics of the overall response and failure modes of advanced materials, such as ceramics and ceramic and other composites. These advanced materials have become the focus of systematic and extensive research in recent times. The book consists of two parts. The first part reviews solids with microdefects such as cavities, cracks, and inclusions, as well as elastic composites. To render the book self-contained, the second part focuses on the fundamentals of continuum mechanics, particularly linear elasticity which forms the basis for the development of small deformation micromechanics. In Part 1, a fundamental and general framework for quantitative, rigorous analysis of the overall response and failure modes of microstructurally heterogeneous solids is systematically developed. These expressions apply to broad classes of materials with inhomogeneities and defects. While for the most part, the general framework is set within linear elasticity, the results directly translate to heterogeneous solids with rate-dependent or rate-independent inelastic constituents. This application is specifically referred to in various chapters. The general exact correlations obtained between the overall properties and the microstructure are then used together with simple models, to develop techniques for direct quantitative evaluation of the overall response which is generally described in terms of instantaneous overall moduli or compliance. The correlations among the corresponding results for a variety of problems are examined in great detail. The bounds as well as the specific results, include new observations and original developments, as well as an in-depth account of the state of the art. Part 2 focuses on Elasticity. The section on variational methods includes some new elements which should prove useful for application to advanced modeling, as well as solutions of composites and related heterogeneous bodies. A brief modern version of elements in vector and tensor algebra is provided which is particularly tailored to provide a background for the rest of this book. The data contained in this volume as Part 1 includes new results on many basic issues in micromechanics, which will be helpful to graduate students and researchers involved with rigorous physically-based modeling of overall properties of heterogeneous solids.

Advanced Mechanics of Composite Materials and Structural Elements

The fourth edition has been updated to reflect new manufacturing processes (such as 3D printing of two matrix composite structural elements) and new theories developed by the authors.

Advanced Mechanics of Composite Materials and Structural Elements

Advanced Mechanics of Composite Materials and Structures analyzes contemporary theoretical models at the micro- and macro levels of material structure. Its coverage of practical methods and approaches, experimental results, and optimization of composite material properties and structural component performance can be put to practical use by researchers and engineers. The fourth edition has been updated to reflect new manufacturing processes (such as 3D printing of two matrix composite structural elements) and new theories developed by the authors. The authors have expanded the content of advanced topic areas with new chapters on axisymmetric deformation of composite shells of revolution, composite pressure vessels, and anisogrid composite lattice structures. This revision includes enhanced sections on optimal design of laminated plates and additional examples of the finite element modelling of composite structures and numerical methods. Advanced Mechanics of Composite Materials and Structures, Fourth edition is unique in that it addresses a wide range of advanced problems in the mechanics of composite materials, such as the physical statistical aspects of fiber strength, stress diffusion in composites with damaged fibers, nonlinear elasticity, and composite pressure vessels to name a few. It also provides the foundation for traditional basic composite material mechanics, making it one of the most comprehensive references on this topic. Presents advanced material on composite structures, including chapters on composite pressure vessels and axisymmetric deformation of composite shells of revolution Provides the applications of composite materials to spacecraft, aircraft and marine included throughout Practical examples of analysis and design of real composite structural components

Mechanics of Composite Materials

This book deals almost exclusively with this unified theory and its various applications.

Mechanics of Composite Materials

In the last decade the author has been engaged in developing a micromechanical composite model based on the study of interacting periodic cells. In this two-phase model, the inclusion is assumed to occupy a single cell whereas the matrix material occupies several surrounding cells. A prominent feature of the micromechanical method of cells is the transition from a medium, with a periodic microstructure to an equivalent homogeneous continuum which effectively represents the composite material. Of great importance is the significant advantage of the cells model in its capability to analyze elastic as well as nonelastic constituents (e.g. viscoelastic, elastoplastic and nonlinear elastic), thus forming a unified approach in the prediction of the overall behaviour of composite material. This book deals almost exclusively with this unified theory and its various applications.

Asymptotical Mechanics of Composites

In this book the authors show that it is possible to construct efficient computationally oriented models of multi-parameter complex systems by using asymptotic methods, which can, owing to their simplicity, be directly used for controlling ...

Asymptotical Mechanics of Composites

In this book the authors show that it is possible to construct efficient computationally oriented models of multi-parameter complex systems by using asymptotic methods, which can, owing to their simplicity, be directly used for controlling processes arising in connection with composite material systems. The book focuses on this asymptotic-modeling-based approach because it allows us to define the most important out of numerous parameters describing the system, or, in other words, the asymptotic methods allow us to estimate the sensitivity of the system parameters. Further, the book addresses the construction of nonlocal and higher-order homogenized models. Local fields on the micro-level and the influence of so-called non-ideal contact between the matrix and inclusions are modeled and investigated. The book then studies composites with non-regular structure and cluster type composite conductivity, and analyzes edge effects in fiber composite materials. Transition of load from a fiber to a matrix for elastic and viscoelastic composites, various types of fiber composite fractures, and buckling of fibers in fiber-reinforced composites is also investigated. Last but not least, the book includes studies on perforated membranes, plates, and shells, as well as the asymptotic modeling of imperfect nonlinear interfaces.