Molecular to Global Photosynthesis

In this book, experts provide a series of authoritative chapters on the intricate mechanisms of photosynthesis and the potential for using and improving photosynthetic organisms, plants and trees to sequester carbon dioxide and to provide ...

Molecular to Global Photosynthesis

Green plants and photosynthetic organisms are the Earth's natural photoconverters of solar energy. In future, biomass and bioenergy will become increasingly significant energy sources, making a contribution both to carbon dioxide abatement and to the security, diversity and sustainability of global energy supplies. In this book, experts provide a series of authoritative chapters on the intricate mechanisms of photosynthesis and the potential for using and improving photosynthetic organisms, plants and trees to sequester carbon dioxide and to provide fuel and useful chemicals for the benefit of man.

Molecular to Global Photosynthesis

cofactors' in a photosynthetic organism are arranged in protein structures whose architecture depends on the type of organism, generically known as photosynthetic units. We discuss these structures in Section 1.3.

Molecular to Global Photosynthesis

Green plants and photosynthetic organisms are the Earth's natural photoconverters of solar energy. In future, biomass and bioenergy will become increasingly significant energy sources, making a contribution both to carbon dioxide abatement and to the security, diversity and sustainability of global energy supplies. In this book, experts provide a series of authoritative chapters on the intricate mechanisms of photosynthesis and the potential for using and improving photosynthetic organisms, plants and trees to sequester carbon dioxide and to provide fuel and useful chemicals for the benefit of man. Contents:Photosynthesis and Photoconversion (J Barber & M D Archer)Light Absorption and Harvesting (A Holzwarth)Electron Transfer in Photosynthesis (W Leibl & P Mathis)Photosynthetic Carbon Assimilation (G E Edwards & D A Walker)Regulation of Photosynthesis in Higher Plants (D Godde & J F Bornman)The Role of Aquatic Photosynthesis in Solar Energy Conversion: A Geoevolutionary Perspective (P G Falkowski, R Geider & J A Raven)Useful Products from Algal Photosynthesis (R Martinez & Z Dubinsky)Hydrogen Production by Photosynthetic Microorganisms (V A Boichenko, E Greenbaum & M Seibert)Photoconversion and Energy Crops (M J Bullard)The Production of Biofuels by Thermal Chemical Processing of Biomass (A V Bridgwater & K Maniatis)Photosynthesis and the Global Carbon Cycle (D Schimel)Management of Terrestrial Vegetation to Mitigate Climate Change (R Tipper & R Carr)Biotechnology: Its Impact and Future Prospects (D J Murphy) Readership: Biologists, biochemists, plant scientists, environmentalists and ecologists.

Photosynthesis

This edited volume, written by some of the world’s foremost authorities on photosynthesis, presents revolutionary new ideas and theories about photosynthesis, and how it can be viewed and studied at various levels within organisms.

Photosynthesis

Photosynthesis is one of the most important processes that affects all life on Earth, and, even now in the twenty-first century, it is still being studied and tested by scientists, chemists, and botanists. Regardless of politics or opinion, climate change is one of the most polarizing and important, potentially dangerous, issues facing the future of our planet, and a better understanding of photosynthesis, and how it is changing with our global climate, could hold the answers to many scientific questions regarding this important phenomenon. This edited volume, written by some of the world’s foremost authorities on photosynthesis, presents revolutionary new ideas and theories about photosynthesis, and how it can be viewed and studied at various levels within organisms. Focusing on the molecular, cellular, and organismic levels, the scientists who compiled this volume offer the student or scientist a new approach to an old subject. Looking through this new lens, we can continue to learn more about the natural world in which we live and our place in it. Valuable to the veteran scientist and student alike, this is a must-have volume for anyone who is researching, studying, or writing about photosynthesis. There are other volumes available that cover the subject, from textbooks to monographs, but this is the first time that a group of papers from this perspective has been gathered by an editor for publication. It is an important and enlightening work on a very important subject that is integral to life on Earth.

Photosynthesis Structures Mechanisms and Applications

The book includes and integrates topics on the structures and mechanisms of photosynthesis, and provides relevant information on applications to bioenergy and solar energy transduction.

Photosynthesis  Structures  Mechanisms  and Applications

To address the environmental, socioeconomic, and geopolitical issues associated with increasing global human energy consumption, technologies for utilizing renewable carbon-free or carbon-neutral energy sources must be identified and developed. Among renewable sources, solar energy is quite promising as it alone is sufficient to meet global human demands well into the foreseeable future. However, it is diffuse and diurnal. Thus effective strategies must be developed for its capture, conversion and storage. In this context, photosynthesis provides a paradigm for large-scale deployment. Photosynthesis occurs in plants, algae, and cyanobacteria and has evolved over 3 billion years. The process of photosynthesis currently produces more than 100 billion tons of dry biomass annually, which equates to a global energy storage rate of ~100 TW. Recently, detailed structural information on the natural photosynthetic systems has been acquired at the molecular level, providing a foundation for comprehensive functional studies of the photosynthetic process. Likewise, sophisticated spectroscopic techniques have revealed important mechanistic details. Such accomplishments have made it possible for scientists and engineers to construct artificial systems for solar energy transduction that are inspired by their biological counterparts. The book contains articles written by experts and world leaders in their respective fields and summarizes the exciting breakthroughs toward understanding the structures and mechanisms of the photosynthetic apparatus as well as efforts toward developing revolutionary new energy conversion technologies. The topics/chapters will be organized in terms of the natural sequence of events occurring in the process of photosynthesis, while keeping a higher-order organization of structure and mechanism as well as the notion that biology can inspire human technologies. For example, the topic of light harvesting, will be followed by charge separation at reaction centers, followed by charge stabilization, followed by chemical reactions, followed by protection mechanisms, followed by other more specialized topics and finally ending with artificial systems and looking forward. As shown in the table of contents (TOC), the book includes and integrates topics on the structures and mechanisms of photosynthesis, and provides relevant information on applications to bioenergy and solar energy transduction.

Photosynthesis

Provides a simplified description of the partial process of photosynthesis at the molecular, organelle, cell and organ levels of organization in plants, which contribute to the complete process.

Photosynthesis

Provides a simplified description of the partial process of photosynthesis at the molecular, organelle, cell and organ levels of organization in plants, which contribute to the complete process. It surveys effects of global environmental change, carbon dioxide enrichment and ozone depletion.

Photosynthesis

The Proceedings Book, a set of 4 (or 5) volumes, is traditionally highly recognized and intensely quoted in the literature, and is found on the shelves of most senior scientists in the field and in all major libraries.

Photosynthesis

Photosynthesis is a process on which virtually all life on Earth depends. To answer the basic questions at all levels of complexity, from molecules to ecosystems, and to establish correlations and interactions between these levels, photosynthesis research - perhaps more than any other discipline in biology - requires a multidisciplinary approach. Congresses probably provide the only forums where progress throughout the whole field can be overviewed. The Congress proceedings give faithful pictures of recent advances in photosynthesis research and outline trends and perspectives in all areas, ranging from molecular events to aspects of photosynthesis on the global scale. The Proceedings Book, a set of 4 (or 5) volumes, is traditionally highly recognized and intensely quoted in the literature, and is found on the shelves of most senior scientists in the field and in all major libraries.

Algal Photosynthesis

This attribute is shared with the terres trial plants, cyanobacteria and chloroxybacteria. Although vascular plants are excluded from this review, we employ a broad definition of algae that includes the photosynthetic, oxygenic procaryotes.

Algal Photosynthesis

The algae are a diverse group of organisms with forms that range in size from less than a micron in diameter to over ten meters in length. Small {laquo} 1 JLm diam) unicellular forms dominate the open waters of the oceans and large lakes. Large multicellular forms often form a large component of the autotrophic biomass of shallow waters at the periphery of lakes and oceans but have also been found on seamounts in clear open ocean waters at depths up to several hundred meters (Littler and Littler, 1985). Phytoplankton in the sea probably account for more than 50% of global photosynthesis, although there is considerable uncertainty about this estimate. In addition, many symbiotic associations between unicellu lar algae and heterotrophic or autotrophic organisms have been identi fied, and algae can be found in a diverse range of terrestrial environ ments, ranging from polar to desert regions. The most important common biochemical attribute that unites the algae is their ability to split water, producing molecular oxygen during photosynthesis and concomi tantly assimilating carbon dioxide. This attribute is shared with the terres trial plants, cyanobacteria and chloroxybacteria. Although vascular plants are excluded from this review, we employ a broad definition of algae that includes the photosynthetic, oxygenic procaryotes. Measurements of gas exchange are fundamental to most biochemical, physiological and ecological investigations of the algae.

Current challenges in photosynthesis From natural to artificial

This ‘hydrogen’ is not normally released into the atmosphere as hydrogen gas but combined with carbon dioxide to make high energy containing organic molecules. When we burn fuels we combine these organic molecules with oxygen.

Current challenges in photosynthesis  From natural to artificial

Jules Verne (1828-1905), author of Around the World in Eighty Days (1873) and Journey to the Center of the Earth (1864), wrote in 1875 “I believe that water will one day be used as a fuel, because the hydrogen and oxygen which constitute it, used separately or together, will furnish an inexhaustible source of heat and light. I therefore believe that, when coal (oil) deposits are oxidised, we will heat ourselves by means of water. Water is the fuel of the future” Solar energy is the only renewable energy source that has sufficient capacity for the global energy need; it is the only one that can address the issues of energy crisis and global climate change. A vast amount of solar energy is harvested and stored via photosynthesis in plants, algae, and cyanobacteria since over 3 billion years. Today, it is estimated that photosynthesis produces more than 100 billion tons of dry biomass annually, which would be equivalent to a hundred times the weight of the total human population on our planet at the present time, and equal to a global energy storage rate of about 100 TW. The solar power is the most abundant source of renewable energy, and oxygenic photosynthesis uses this energy to power the planet using the amazing reaction of water splitting. During water splitting, driven ultimately by sunlight, oxygen is released into the atmosphere, and this, along with food production by photosynthesis, supports life on our earth. The other product of water oxidation is “hydrogen” (proton and electron). This ‘hydrogen’ is not normally released into the atmosphere as hydrogen gas but combined with carbon dioxide to make high energy containing organic molecules. When we burn fuels we combine these organic molecules with oxygen. The design of new solar energy systems must adhere to the same principle as that of natural photosynthesis. For us to manipulate it to our benefit, it is imperative that we completely understand the basic processes of natural photosynthesis, and chemical conversion, such as light harvesting, excitation energy transfer, electron transfer, ion transport, and carbon fixation. Equally important, we must exploit application of this knowledge to the development of fully synthetic and/or hybrid devices. Understanding of photosynthetic reactions is not only a satisfying intellectual pursuit, but it is important for improving agricultural yields and for developing new solar technologies. Today, we have considerable knowledge of the working of photosynthesis and its photosystems, including the water oxidation reaction. Recent advances towards the understanding of the structure and the mechanism of the natural photosynthetic systems are being made at the molecular level. To mimic natural photosynthesis, inorganic chemists, organic chemists, electrochemists, material scientists, biochemists, biophysicists, and plant biologists must work together and only then significant progress in harnessing energy via “artificial photosynthesis” will be possible. This Research Topic provides recent advances of our understanding of photosynthesis, gives to our readers recent information on photosynthesis research, and summarizes the characteristics of the natural system from the standpoint of what we could learn from it to produce an efficient artificial system, i.e., from the natural to the artificial. This topic is intended to include exciting breakthroughs, possible limitations, and open questions in the frontiers in photosynthesis research.

Aquatic Photosynthesis

This second edition, thoroughly revised to bring it up to date, describes how one of the most fundamental metabolic processes evolved and transformed the surface chemistry of the Earth.

Aquatic Photosynthesis

Aquatic Photosynthesis is a comprehensive guide to understanding the evolution and ecology of photosynthesis in aquatic environments. This second edition, thoroughly revised to bring it up to date, describes how one of the most fundamental metabolic processes evolved and transformed the surface chemistry of the Earth. The book focuses on recent biochemical and biophysical advances and the molecular biological techniques that have made them possible. In ten chapters that are self-contained but that build upon information presented earlier, the book starts with a reductionist, biophysical description of the photosynthetic reactions. It then moves through biochemical and molecular biological patterns in aquatic photoautotrophs, physiological and ecological principles, and global biogeochemical cycles. The book considers applications to ecology, and refers to historical developments. It can be used as a primary text in a lecture course, or as a supplemental text in a survey course such as biological oceanography, limnology, or biogeochemistry.

Photochemistry

Providing critical reviews of recent advances in photochemistry including organic and computational aspects, the latest volume in the Series reflects the current interests in this area.

Photochemistry

Providing critical reviews of recent advances in photochemistry including organic and computational aspects, the latest volume in the Series reflects the current interests in this area. It also includes a series of highlights on molecular devices, global artificial photosynthesis, silicon nanoparticles, solar energy conversion, organic heterogeneous photocatalysis and photochemistry in surface-water environments. Volume 44 of the annual Specialist Periodical Reports: Photochemistry is essential reading for anyone wishing to keep up with the literature on photochemistry and its applications.

Feeding a World Population of More than Eight Billion People

Genetic improvement of stress tolerance in transgenic plants and cyanobacteria, multiple effects and glycine betaine. In: Molecular to Global Photosynthesis, ed. J. Barber. London: Imperial College, Centre for Photomolecular Sciences.

Feeding a World Population of More than Eight Billion People

Since the 1960s, breakthroughs in agriculture have made it possible to satisfy the world's increasing requirements for food. Can this trend continue over the next thirty years when the world population is projected to exceed eight billion? This book takes a critical look at the immediate challenges for feeding the population just a generation from now. Based on the 10th International Symposium sponsored by the Nutrition Committee and the Trustees of the Rank Prize Funds, the volume examines the full range of related issues, from food economics to resource allocation and crop yields. Beginning with an analysis of future food needs, the articles cover basic resources and constraints, applications of science to increase yield, the role of animal products in feeding eight billion people, and diverse social issues. The book provides insights into some of the most important questions we will be faced with in the coming years, making it an invaluable resource for a wide range of researchers in agriculture, the environment, and public policy.

Photosynthesis Mechanisms and Effects

The Proceedings Book, a set of 4 (or 5) volumes, is traditionally highly recognized and intensely quoted in the literature, and is found on the shelves of most senior scientists in the field and in all major libraries.

Photosynthesis  Mechanisms and Effects

Photosynthesis is a process on which virtually all life on Earth depends. To answer the basic questions at all levels of complexity, from molecules to ecosystems, and to establish correlations and interactions between these levels, photosynthesis research - perhaps more than any other discipline in biology - requires a multidisciplinary approach. Congresses probably provide the only forums where progress throughout the whole field can be overviewed. The Congress proceedings give faithful pictures of recent advances in photosynthesis research and outline trends and perspectives in all areas, ranging from molecular events to aspects of photosynthesis on the global scale. The Proceedings Book, a set of 4 (or 5) volumes, is traditionally highly recognized and intensely quoted in the literature, and is found on the shelves of most senior scientists in the field and in all major libraries.

Climate Change Photosynthesis and Advanced Biofuels

Accordingly, this book provides ample information and a wealth of illustrative examples. The book’s eighteen richly illustrated chapters are divided into three thematic parts.

Climate Change  Photosynthesis and Advanced Biofuels

The use of fossil fuels results in rising CO2 and other greenhouse gas (GHG) emissions, causing global temperature rise and climate change that will negatively impact human health, the food supply, and eventually worsen hunger and misery. Presently, fossil fuels meet 88% of the energy demand, resulting in rising CO2/GHG emissions at alarming rates. The increased use of biofuels would help to mitigate climate change. Efficiently designing methods for the production of biofuels and plant-derived high-value products requires a deeper understanding of photosynthetic processes as a prerequisite for applying novel biotechnologies. Accordingly, this book provides ample information and a wealth of illustrative examples. The book’s eighteen richly illustrated chapters are divided into three thematic parts. I: Photosynthesis and Biomass Production under Changing Conditions, II: Microalgae and Engineered Crops for Production of Biofuels and High-value Products, and III: Genetic Resources and Engineering Methods to Improve Crop Plants. Readers will find the latest information on the molecular basis of photosynthetic processes in plants (including the regulatory principles that allow plants to maintain homeostasis under changing conditions), stress resistance and synthetic pathways. In addition, the basic principles of important biotechnologies, as well as examples of specially designed crops capable of growing under stress conditions with improved productivity, are presented. The book sets the course for future research in the field of biofuel development and production and provides both general and specific information for students, teachers, academic researchers, industrial teams, and general readers who are interested in new developments concerning the production of biofuels with value-added properties.

Molecular Mechanisms of Photosynthesis

Does the organism have to derive all its energy from light to be classified as photosynthetic? ... Therefore, this form of photosynthesis seemed to be of minor importance in terms of global photosynthesis. However, in recent years, ...

Molecular Mechanisms of Photosynthesis

MOLECULAR MECHANISMS OF PHOTOSYNTHESIS Rediscover the foremost introduction to molecular photosynthesis on the market today In the comprehensively revised Third Edition of Molecular Mechanisms of Photosynthesis, distinguished researcher and professor Robert E. Blankenship delivers a brand-new update to the most authoritative textbook on the subject of photosynthesis. In addition to thorough coverage of foundational topics in photosynthesis, the book discusses cutting-edge advances in research in this area, including new structures and new information about the mechanism of oxygen production. The author also describes advancements in the understanding of the regulation of photosynthesis and the critical process of photoprotection, as well as newly discovered pigments and organisms that extend oxygenic photosynthesis deeper into the near infrared spectral region. Readers will also benefit from the inclusion of a fulsome appendix that incorporates a detailed introduction to the physical basis of photosynthesis, including thermodynamics, kinetics, and spectroscopy. A companion website offers downloadable figures as PowerPoint slides ideal for teaching. The book also includes: Thorough introductions to the basic principles of photosynthetic energy storage, photosynthetic organisms and organelles, and the history and early development of photosynthesis An expansive discussion of photosynthetic pigments, including their structure and spectroscopy Explorations of antenna complexes, energy transfer processes, reaction centers, and electron transport pathways in anoxygenic phototrophs and oxygenic photosynthetic organisms Comprehensive treatments of chemiosmotic coupling, ATP synthesis, and carbon metabolism Authoritative discussions of the evolution of photosynthesis and artificial photosynthesis Perfect for advanced undergraduate and beginning graduate students in biochemistry and biophysics, Molecular Mechanisms of Photosynthesis will also earn a place in the libraries of students studying plant biology and seeking a one-stop resource in the field of molecular photosynthesis.

Terrestrial Photosynthesis in a Changing Environment

Covering all aspects of photosynthesis, from basic concepts to methodologies, from the organelle to whole ecosystem levels, this is an integrated guide to photosynthesis in an environmentally dynamic context.

Terrestrial Photosynthesis in a Changing Environment

Understanding how photosynthesis responds to the environment is crucial for improving plant production and maintaining biodiversity in the context of global change. Covering all aspects of photosynthesis, from basic concepts to methodologies, from the organelle to whole ecosystem levels, this is an integrated guide to photosynthesis in an environmentally dynamic context. Focusing on the ecophysiology of photosynthesis – how photosynthesis varies in time and space, responds and adapts to environmental conditions and differs among species within an evolutionary context – the book features contributions from leaders in the field. The approach is interdisciplinary and the topics covered have applications for ecology, environmental sciences, agronomy, forestry and meteorology. It also addresses applied fields such as climate change, biomass and biofuel production and genetic engineering, making a valuable contribution to our understanding of the impacts of climate change on the primary productivity of the globe and on ecosystem stability.

Renewable Energy Resources

Authoritative global association, e.g., excellent statistics at https://worldbioenergy.org/ global-bioenergy-statistics Photosynthesis Archer, M. and Barber, J. (eds) (2004) Molecular to Global Photosynthesis, Imperial College ...

Renewable Energy Resources

Renewable Energy Resources is a numerate and quantitative text. It covers the many renewables technologies implemented worldwide by harnessing sustainable resources, mitigating pollution and climate change, and providing cost effective services. This fourth edition is extensively updated by John Twidell with global developments as underpinned by fundamental analysis and illustrated by case studies and worked examples. Efficiency of end-use and cost-effectiveness is emphasized. Each chapter begins with fundamental scientific theory, and then considers applications, environmental impact and socio-economic aspects, before concluding with Quick Questions for self-revision, Problems and new Exercises. Basic theory underlying the technologies is covered in succinct Reviews of electrical power, fluid dynamics, heat transfer and solid-state physics. Common symbols and cross-referencing apply throughout; essential data are tabulated in Appendices. Renewable Energy Resources supports multidisciplinary master’s degrees in science and engineering, and specialist modules at undergraduate level. Practicing scientists and engineers will find it a useful introductory text and reference book.

Photosynthesis

Research has progressed rapidly in recent years, and this book is an interesting read for an audience who is concerned with various ways of harnessing solar energy.Our understanding of photosynthesis can now be said to have reached ...

Photosynthesis

Photosynthesis has been an important field of research for more than a century, but the present concerns about energy, environment and climate have greatly intensified interest in and research on this topic. Research has progressed rapidly in recent years, and this book is an interesting read for an audience who is concerned with various ways of harnessing solar energy. Our understanding of photosynthesis can now be said to have reached encyclopedic dimensions. There have been, in the past, many good books at various levels. Our book is expected to fulfill the needs of advanced undergraduate and beginning graduate students in branches of biology, biochemistry, biophysics, and bioengineering because photosynthesis is the basis of future advances in producing more food, more biomass, more fuel, and new chemicals for our expanding global human population. Further, the basics of photosynthesis are and will be used not only for the above, but in artificial photosynthesis, an important emerging field where chemists, researchers and engineers of solar energy systems will play a major role.

Handbook of Photosynthesis

Photosynthesis and photoconversion. In Molecular to Global Photosynthesis, eds. E. Heuvelink, M. D. Archer, and J. D. Barber. London: Imperial College Press. Aye, L., R. J. Fuller, and A. Canal. 2010. Evaluation of a heat pump system ...

Handbook of Photosynthesis

Since the publication of the previous editions of the Handbook of Photosynthesis, many new ideas on photosynthesis have emerged in the past decade that have drawn the attention of experts and researchers on the subject as well as interest from individuals in other disciplines. Updated to include 37 original chapters and making extensive revisions to the chapters that have been retained, 90% of the material in this edition is entirely new. With contributions from over 100 authors from around the globe, this book covers the most recent important research findings. It details all photosynthetic factors and processes under normal and stressful conditions, explores the relationship between photosynthesis and other plant physiological processes, and relates photosynthesis to plant production and crop yields. The third edition also presents an extensive new section on the molecular aspects of photosynthesis, focusing on photosystems, photosynthetic enzymes, and genes. New chapters on photosynthesis in lower and monocellular plants as well as in higher plants are included in this section. The book also addresses growing concerns about excessive levels and high accumulation rates of carbon dioxide due to industrialization. It considers plant species with the most efficient photosynthetic pathways that can help improve the balance of oxygen and carbon dioxide in the atmosphere. Completely overhauled from its bestselling predecessors, the Handbook of Photosynthesis, Third Edition provides a nearly entirely new source on the subject that is both comprehensive and timely. It continues to fill the need for an authoritative and exhaustive resource by assembling a global team of experts to provide thorough coverage of the subject while focusing on finding solutions to relevant contemporary issues related to the field.

Photosynthesis

From Its Evolution to Future Improvements in Photosynthetic Efficiency Using Nanomaterials Juan Cristóbal García Cañedo, Gema Lorena López-Lizárraga ... [1] Archer DM, Barber J. Molecular to Global Photosynthesis ...

Photosynthesis

This book is a compilation. It starts from the origins of the photosynthetic capacity of organisms with a summary of the evolution of photosynthesis. This is followed by a concise description of the photosynthetic process and a discussion of the role that light, nutrients, and cultivation play in the photosynthetic process using examples in each case. Finally, the book explains future improvements in the field by applying nanotechnology to improve photosynthetic productivity, explaining how crop productivity can be increased by engineering crop plants for tolerance against various environmental stresses and improving yield attributes, especially photosynthetic efficiency using nanomaterials.

Photosynthesis in Algae

This book introduces the reader to algal diversity as currently understood and then traces the photosynthetic structures and mechanisms that contribute so much to making the algae unique.

Photosynthesis in Algae

This book introduces the reader to algal diversity as currently understood and then traces the photosynthetic structures and mechanisms that contribute so much to making the algae unique. Indeed the field is now so large that no one expert can hope to cover it all. The 19 articles are each written by experts in their area; ranging over all the essential aspects and making for a comprehensive coverage of the whole field. Important developments in molecular biology, especially transformation mutants in Chlamydomonas, are dealt with, as well as areas important to global climate change, carbon dioxide exchange, light harvesting, energy transduction, biotechnology and many others. The book is intended for use by graduate students and beginning researchers in the areas of molecular and cell biology, integrative biology, plant biology, biochemistry and biophysics, biotechnology, global ecology, and phycology.