Nonlinear and Dynamic Programming

The text contains numerous exercises. The reader should work out these problems for himself and check with the answers given at the end of the book. The text is based on lectures given at the University of Copenhagen.

Nonlinear and Dynamic Programming

This book is intended to provide an introductory text of Nonlinear and Dynamic Programming for students of managerial economics and operations research. The author also hopes that engineers, business executives, managers, and others responsible for planning of industrial operations may find it useful as a guide to the problems and methods treated, with a view to practical applications. The book may be considered as a sequel to the author's Linear Programming in Industry (1960, 4th revised and enlarged edition 1974), but it can be used independently by readers familiar with the elements of linear programming models and techniques. The two volumes con stitute an introduction to the methods of mathematical programming and their application to industrial optimization problems. The author feels that the vast and ever-increasing literature on mathematical programming has not rendered an introductory exposition super fluous. The general student often tends to feel somewhat lost if he goes straight to the special literature; he will be better equipped for tackling real problems and using computer systems if he has acquired some previous training in constructing small-scale programming models and applying standard algorithms for solving them by hand. The book is intended to provide this kind of training, keeping the mathematics at the necessary minimum. The text contains numerous exercises. The reader should work out these problems for himself and check with the answers given at the end of the book. The text is based on lectures given at the University of Copenhagen.

Adaptive Dynamic Programming for Control

This text will be of considerable interest to researchers interested in optimal control and its applications in operations research, applied mathematics computational intelligence and engineering.

Adaptive Dynamic Programming for Control

There are many methods of stable controller design for nonlinear systems. In seeking to go beyond the minimum requirement of stability, Adaptive Dynamic Programming in Discrete Time approaches the challenging topic of optimal control for nonlinear systems using the tools of adaptive dynamic programming (ADP). The range of systems treated is extensive; affine, switched, singularly perturbed and time-delay nonlinear systems are discussed as are the uses of neural networks and techniques of value and policy iteration. The text features three main aspects of ADP in which the methods proposed for stabilization and for tracking and games benefit from the incorporation of optimal control methods: • infinite-horizon control for which the difficulty of solving partial differential Hamilton–Jacobi–Bellman equations directly is overcome, and proof provided that the iterative value function updating sequence converges to the infimum of all the value functions obtained by admissible control law sequences; • finite-horizon control, implemented in discrete-time nonlinear systems showing the reader how to obtain suboptimal control solutions within a fixed number of control steps and with results more easily applied in real systems than those usually gained from infinite-horizon control; • nonlinear games for which a pair of mixed optimal policies are derived for solving games both when the saddle point does not exist, and, when it does, avoiding the existence conditions of the saddle point. Non-zero-sum games are studied in the context of a single network scheme in which policies are obtained guaranteeing system stability and minimizing the individual performance function yielding a Nash equilibrium. In order to make the coverage suitable for the student as well as for the expert reader, Adaptive Dynamic Programming in Discrete Time: • establishes the fundamental theory involved clearly with each chapter devoted to a clearly identifiable control paradigm; • demonstrates convergence proofs of the ADP algorithms to deepen understanding of the derivation of stability and convergence with the iterative computational methods used; and • shows how ADP methods can be put to use both in simulation and in real applications. This text will be of considerable interest to researchers interested in optimal control and its applications in operations research, applied mathematics computational intelligence and engineering. Graduate students working in control and operations research will also find the ideas presented here to be a source of powerful methods for furthering their study.

Nonlinear Programming

This book provides a comprehensive and accessible presentation of algorithms for solving continuous optimization problems.

Nonlinear Programming

This book provides a comprehensive and accessible presentation of algorithms for solving continuous optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. It places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The 3rd edition brings the book in closer harmony with the companion works Convex Optimization Theory (Athena Scientific, 2009), Convex Optimization Algorithms (Athena Scientific, 2015), Convex Analysis and Optimization (Athena Scientific, 2003), and Network Optimization (Athena Scientific, 1998). These works are complementary in that they deal primarily with convex, possibly nondifferentiable, optimization problems and rely on convex analysis. By contrast the nonlinear programming book focuses primarily on analytical and computational methods for possibly nonconvex differentiable problems. It relies primarily on calculus and variational analysis, yet it still contains a detailed presentation of duality theory and its uses for both convex and nonconvex problems. Among its special features, the book: Provides extensive coverage of iterative optimization methods within a unifying framework Covers in depth duality theory from both a variational and a geometric point of view Provides a detailed treatment of interior point methods for linear programming Includes much new material on a number of topics, such as proximal algorithms, alternating direction methods of multipliers, and conic programming Focuses on large-scale optimization topics of much current interest, such as first order methods, incremental methods, and distributed asynchronous computation, and their applications in machine learning, signal processing, neural network training, and big data applications Includes a large number of examples and exercises Was developed through extensive classroom use in first-year graduate courses

Nonlinear Programming Method for Dynamic Programming

A nonlinear programming formulation is introduced to solve infinite horizon dynamic programming problems.

Nonlinear Programming Method for Dynamic Programming

A nonlinear programming formulation is introduced to solve infinite horizon dynamic programming problems. This extends the linear approach to dynamic programming by using ideas from approximation theory to avoid inefficient discretization. Our numerical results show that this nonlinear programming method is efficient and accurate.

Self Learning Optimal Control of Nonlinear Systems

This book presents a class of novel, self-learning, optimal control schemes based on adaptive dynamic programming techniques, which quantitatively obtain the optimal control schemes of the systems.

Self Learning Optimal Control of Nonlinear Systems

This book presents a class of novel, self-learning, optimal control schemes based on adaptive dynamic programming techniques, which quantitatively obtain the optimal control schemes of the systems. It analyzes the properties identified by the programming methods, including the convergence of the iterative value functions and the stability of the system under iterative control laws, helping to guarantee the effectiveness of the methods developed. When the system model is known, self-learning optimal control is designed on the basis of the system model; when the system model is not known, adaptive dynamic programming is implemented according to the system data, effectively making the performance of the system converge to the optimum. With various real-world examples to complement and substantiate the mathematical analysis, the book is a valuable guide for engineers, researchers, and students in control science and engineering.