Radiation Tolerant Electronics

In this book we highlight recent breakthroughs in the study of radiation effects in advanced semiconductor devices, as well as in high-performance analog, mixed signal, RF, and digital integrated circuits.

Radiation Tolerant Electronics

Research on radiation-tolerant electronics has increased rapidly over the past few years, resulting in many interesting approaches to modeling radiation effects and designing radiation-hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation-hardened electronics for space applications, high-energy physics experiments such as those on the Large Hadron Collider at CERN, and many terrestrial nuclear applications including nuclear energy and nuclear safety. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their susceptibility to ionizing radiation has raised many exciting challenges, which are expected to drive research in the coming decade. In this book we highlight recent breakthroughs in the study of radiation effects in advanced semiconductor devices, as well as in high-performance analog, mixed signal, RF, and digital integrated circuits. We also focus on advances in embedded radiation hardening in both FPGA and microcontroller systems and apply radiation-hardened embedded systems for cryptography and image processing, targeting space applications.

Radiation Tolerant Delta Sigma Time to Digital Converters

Starting with an inspiring story about how integrated circuits pave the way to the
Higgs particles, some most interesting potential applications of radiation-
hardened electronics are then introduced. It is followed by a detailed explanation
of a ...

Radiation Tolerant Delta Sigma Time to Digital Converters

This book focuses on the design of a Mega-Gray (a standard unit of total ionizing radiation) radiation-tolerant ps-resolution time-to-digital converter (TDC) for a light detection and ranging (LIDAR) system used in a gamma-radiation environment. Several radiation-hardened-by-design (RHBD) techniques are demonstrated throughout the design of the TDC and other circuit techniques to improve the TDC's resolution in a harsh environment are also investigated. Readers can learn from scratch how to design a radiation-tolerant IC. Information regarding radiation effects, radiation-hardened design techniques and measurements are organized in such a way that readers can easily gain a thorough understanding of the topic. Readers will also learn the design theory behind the newly proposed delta-sigma TDC. Readers can quickly acquire knowledge about the design of radiation-hardened bandgap voltage references and low-jitter relaxation oscillators, which are introduced in the content from a designer's perspective. · Discusses important aspects of radiation-tolerant analog IC design, including realistic applications and radiation effects on ICs; · Demonstrates radiation-hardened-by-design techniques through a design-test-radiation assessment practice; · Describes a new type of Time-to-Digital (TDC) converter designed for radiation-tolerant application; · Explains the design and measurement of all functional blocks (e.g., bandgap reference, relaxation oscillator) in the TDC.

Radiation Effects and Soft Errors in Integrated Circuits and Electronic Devices

Current design techniques using commercial processes for radiation-tolerant
integrated circuits are summarized, with an ... topologies to enhance the 69
International Journal of High Speed Electronics and Systems Radiation-Tolerant
Design ...

Radiation Effects and Soft Errors in Integrated Circuits and Electronic Devices

This book provides a detailed treatment of radiation effects in electronic devices, including effects at the material, device, and circuit levels. The emphasis is on transient effects caused by single ionizing particles (single-event effects and soft errors) and effects produced by the cumulative energy deposited by the radiation (total ionizing dose effects). Bipolar (Si and SiGe), metalOCooxideOCosemiconductor (MOS), and compound semiconductor technologies are discussed. In addition to considering the specific issues associated with high-performance devices and technologies, the book includes the background material necessary for understanding radiation effects at a more general level. Contents: Single Event Effects in Avionics and on the Ground (E Normand); Soft Errors in Commercial Integrated Circuits (R C Baumann); System Level Single Event Upset Mitigation Strategies (W F Heidergott); Space Radiation Effects in Optocouplers (R A Reed et al.); The Effects of Space Radiation Exposure on Power MOSFETs: A Review (K Shenai et al.); Total Dose Effects in Linear Bipolar Integrated Circuits (H J Barnaby); Hardness Assurance for Commercial Microelectronics (R L Pease); Switching Oxide Traps (T R Oldham); Online and Realtime Dosimetry Using Optically Stimulated Luminescence (L Dusseau & J Gasiot); and other articles. Readership: Practitioners, researchers, managers and graduate students in electrical and electronic engineering, semiconductor science and technology, and microelectronics."

Integrated Circuit Design for Radiation Environments

A practical guide to the effects of radiation on semiconductor components of electronic systems, and techniques for the designing, laying out, and testing of hardened integrated circuits This book teaches the fundamentals of radiation ...

Integrated Circuit Design for Radiation Environments

A practical guide to the effects of radiation on semiconductor components of electronic systems, and techniques for the designing, laying out, and testing of hardened integrated circuits This book teaches the fundamentals of radiation environments and their effects on electronic components, as well as how to design, lay out, and test cost-effective hardened semiconductor chips not only for today’s space systems but for commercial terrestrial applications as well. It provides a historical perspective, the fundamental science of radiation, and the basics of semiconductors, as well as radiation-induced failure mechanisms in semiconductor chips. Integrated Circuits Design for Radiation Environments starts by introducing readers to semiconductors and radiation environments (including space, atmospheric, and terrestrial environments) followed by circuit design and layout. The book introduces radiation effects phenomena including single-event effects, total ionizing dose damage and displacement damage) and shows how technological solutions can address both phenomena. Describes the fundamentals of radiation environments and their effects on electronic components Teaches readers how to design, lay out and test cost-effective hardened semiconductor chips for space systems and commercial terrestrial applications Covers natural and man-made radiation environments, space systems and commercial terrestrial applications Provides up-to-date coverage of state-of-the-art of radiation hardening technology in one concise volume Includes questions and answers for the reader to test their knowledge Integrated Circuits Design for Radiation Environments will appeal to researchers and product developers in the semiconductor, space, and defense industries, as well as electronic engineers in the medical field. The book is also helpful for system, layout, process, device, reliability, applications, ESD, latchup and circuit design semiconductor engineers, along with anyone involved in micro-electronics used in harsh environments.

Radiation Effects in Semiconductors

Features a chapter authored by renowned radiation authority Lawrence T. Clark on Radiation Hardened by Design SRAM Strategies for TID and SEE Mitigation This book analyzes the radiation problem, focusing on the most important aspects ...

Radiation Effects in Semiconductors

Space applications, nuclear physics, military operations, medical imaging, and especially electronics (modern silicon processing) are obvious fields in which radiation damage can have serious consequences, i.e., degradation of MOS devices and circuits. Zeroing in on vital aspects of this broad and complex topic, Radiation Effects in Semiconductors addresses the ever-growing need for a clear understanding of radiation effects on semiconductor devices and circuits to combat potential damage it can cause. Features a chapter authored by renowned radiation authority Lawrence T. Clark on Radiation Hardened by Design SRAM Strategies for TID and SEE Mitigation This book analyzes the radiation problem, focusing on the most important aspects required for comprehending the degrading effects observed in semiconductor devices, circuits, and systems when they are irradiated. It explores how radiation interacts with solid materials, providing a detailed analysis of three ways this occurs: Photoelectric effect, Compton effect, and creation of electron-positron pairs. The author explains that the probability of these three effects occurring depends on the energy of the incident photon and the atomic number of the target. The book also discusses the effects that photons can have on matter—in terms of ionization effects and nuclear displacement Written for post-graduate researchers, semiconductor engineers, and nuclear and space engineers with some electronics background, this carefully constructed reference explains how ionizing radiation is creating damage in semiconducting devices and circuits and systems—and how that damage can be avoided in areas such as military/space missions, nuclear applications, plasma damage, and X-ray-based techniques. It features top-notch international experts in industry and academia who address emerging detector technologies, circuit design techniques, new materials, and innovative system approaches.

Radiation Hardened CMOS Integrated Circuits for Time Based Signal Processing

This book presents state-of-the-art techniques for radiation hardened high-resolution Time-to-Digital converters and low noise frequency synthesizers.

Radiation Hardened CMOS Integrated Circuits for Time Based Signal Processing

This book presents state-of-the-art techniques for radiation hardened high-resolution Time-to-Digital converters and low noise frequency synthesizers. Throughout the book, advanced degradation mechanisms and error sources are discussed and several ways to prevent such errors are presented. An overview of the prerequisite physics of nuclear interactions is given that has been compiled in an easy to understand chapter. The book is structured in a way that different hardening techniques and solutions are supported by theory and experimental data with their various tradeoffs. Based on leading-edge research, conducted in collaboration between KU Leuven and CERN, the European Center for Nuclear Research Describes in detail advanced techniques to harden circuits against ionizing radiation Provides a practical way to learn and understand radiation effects in time-based circuits Includes an introduction to the underlying physics, circuit design, and advanced techniques accompanied with experimental data

Radiation Effects on Embedded Systems

[11] W. Snoeys et al., “Layout techniques to enhance the radiation tolerance of
standard CMOS technologies demonstrated ... [16] A.Giraldo, “Evaluation of
Deep Submicron Technologies with Radiation Tolerant Layout for Electronics in
LHC ...

Radiation Effects on Embedded Systems

This volume provides an extensive overview of radiation effects on integrated circuits, offering major guidelines for coping with radiation effects on components. It contains a set of chapters based on the tutorials presented at the International School on Effects of Radiation on Embedded Systems for Space Applications (SERESSA) that was held in Manaus, Brazil, November 20-25, 2005.

Extreme Environment Electronics

The RHESE project was formulated to provide advancements in environmentally
hardened flight electronics and avionic ... They collectively included the
development of total dose radiation-tolerant electronics, SEU-tolerant electronics,
 ...

Extreme Environment Electronics

Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world’s foremost experts in extreme environment electronics, the book provides in-depth information on a wide array of topics. It begins by describing the extreme conditions and then delves into a description of suitable semiconductor technologies and the modeling of devices within those technologies. It also discusses reliability issues and failure mechanisms that readers need to be aware of, as well as best practices for the design of these electronics. Continuing beyond just the "paper design" of building blocks, the book rounds out coverage of the design realization process with verification techniques and chapters on electronic packaging for extreme environments. The final set of chapters describes actual chip-level designs for applications in energy and space exploration. Requiring only a basic background in electronics, the book combines theoretical and practical aspects in each self-contained chapter. Appendices supply additional background material. With its broad coverage and depth, and the expertise of the contributing authors, this is an invaluable reference for engineers, scientists, and technical managers, as well as researchers and graduate students. A hands-on resource, it explores what is required to successfully operate electronics in the most demanding conditions.

Proceedings of the Sixth Workshop on Electronics for LHC Experiments

Overview of the ATLAS Policy on Radiation Tolerant Electronics Martin Dentan ,
on behalf of the ATLAS Radiation Hardness Assurance Working Group . CERN ,
CH - 1211 Geneva 23 , Switzerland ; and CEA Saclay , F - 91191 Gif - sur ...

Proceedings of the Sixth Workshop on Electronics for LHC Experiments

The purpose of the workshop was to review the electronics for LHC experiments and to identify areas and encourage common efforts for the development of electronics within and between the different LHC experiments and to promote collaboration in the engineering and physics communities involed in the LHC activities..

Single Event Effects in Aerospace

This book introduces the basic concepts necessary to understand Single Event phenomena which could cause random performance errors and catastrophic failures to electronics devices.

Single Event Effects in Aerospace

This book introduces the basic concepts necessary to understand Single Event phenomena which could cause random performance errors and catastrophic failures to electronics devices. As miniaturization of electronics components advances, electronics components are more susceptible in the radiation environment. The book includes a discussion of the radiation environments in space and in the atmosphere, radiation rate prediction depending on the orbit to allow electronics engineers to design and select radiation tolerant components and systems, and single event prediction.

Radiation Effects in Advanced Semiconductor Materials and Devices

Electronics Lett 31 : 12011202 145 . ... Lawrence RK , Hughes HL , Stahlbush (
1990 ) Radiation sensitivity of buried oxides . ... McMarr P ( 1997 ) Thin BOX
SIMOX silicon - on - insulator substrates for radiation tolerant advanced
electronics .

Radiation Effects in Advanced Semiconductor Materials and Devices

As microprocessors shrink in size, there is a growing need to understand and combat potential radiation damage problems. Space applications are an obvious case, but, beyond that, today's device and circuit fabrication rely on an increasing number of processing steps that involve a perilous environment where inadvertent radiation damage can occur. This book is aimed at researchers seeking an overview of the field and nuclear, space, and process engineers. Background knowledge of semiconductor and device physics is assumed, but the basic concepts are all concisely summarized.

Evolution of Silicon Sensor Technology in Particle Physics

... The main drawback of radiation damage in electronics is the increase of
transistor threshold voltage Vthr and leakage current. ... with the deep sub-micron
processing is described which is the key technology for radiation- tolerant
electronics.

Evolution of Silicon Sensor Technology in Particle Physics

In the post era of the Z and W discovery, after the observation of Jets at UA1 and UA2 at CERN, John Ellis visioned at a HEP conference at Lake Tahoe, California in 1983 “To proceed with high energy particle physics, one has to tag the avour of the quarks!” This statement re ects the need for a highly precise tracking device, being able to resolve secondary and tertiary vertices within high-particle densities. Since the d- tance between the primary interaction point and the secondary vertex is proportional tothelifetimeoftheparticipatingparticle,itisanexcellentquantitytoidentifypar- cle avour in a very fast and precise way. In colliding beam experiments this method was applied especially to tag the presence of b quarks within particle jets. It was rst introduced in the DELPHI experiment at LEP but soon followed by all collider - periments to date. The long expected t quark discovery was possible mainly with the help of the CDF silicon vertex tracker, providing the b quark information. In the beginning of the 21st century the new LHC experiments are beginning to take 2 shape. CMS with its 206m of silicon area is perfectly suited to cope with the high luminosity environment. Even larger detectors are envisioned for the far future, like the SiLC project for the International Linear Collider. Silicon sensors matured from small 1in. single-sided devices to large 6in. double-sided, double metal detectors and to 6in. single-sided radiation hard sensors.

Genetic and Evolutionary Computation GECCO 2004

Temperature and radiation tolerant electronics, as well as long life survivability
are key capabilities required for future NASA missions. Current approaches to
electronics for extreme environments focus on component level robustness and ...

Genetic and Evolutionary Computation     GECCO 2004

The two volume set LNCS 3102/3103 constitutes the refereed proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2004, held in Seattle, WA, USA, in June 2004. The 230 revised full papers and 104 poster papers presented were carefully reviewed and selected from 460 submissions. The papers are organized in topical sections on artificial life, adaptive behavior, agents, and ant colony optimization; artificial immune systems, biological applications; coevolution; evolutionary robotics; evolution strategies and evolutionary programming; evolvable hardware; genetic algorithms; genetic programming; learning classifier systems; real world applications; and search-based software engineering.

Annual Report of the European Organization for Nuclear Research

Subject : Policy on radiation - tolerant electronics M . F . Dentan / CERN - EP Also
, it provides a fast logic signal or a fast analog signal each time a photon or a
charge particle is impinging the radiation pixel sensor , without any additional ...

Annual Report of the European Organization for Nuclear Research


CMOS

Emphasizing practical design and implementation, this book: Covers the fundamental principles of signal processing for radiation detectors Discusses the relevant analog building blocks used in the front-end electronics Employs ...

CMOS

CMOS: Front-End Electronics for Radiation Sensors offers a comprehensive introduction to integrated front-end electronics for radiation detectors, focusing on devices that capture individual particles or photons and are used in nuclear and high energy physics, space instrumentation, medical physics, homeland security, and related fields. Emphasizing practical design and implementation, this book: Covers the fundamental principles of signal processing for radiation detectors Discusses the relevant analog building blocks used in the front-end electronics Employs systematically weak and moderate inversion regimes in circuit analysis Makes complex topics such as noise and circuit-weighting functions more accessible Includes numerical examples where appropriate CMOS: Front-End Electronics for Radiation Sensors provides specialized knowledge previously obtained only through the study of multiple technical and scientific papers. It is an ideal text for students of physics and electronics engineering, as well as a useful reference for experienced practitioners.

Iii Nitride Devices and Nanoengineering

GaN-on-Si technology supports a broad range of product applications, such as
optoelectronics, microwave and millimeter-wave high-power electronics, optical
and mechanical sensors, hightemperature and radiation-tolerant electronics and
 ...

Iii Nitride Devices and Nanoengineering

Devices, nanoscale science and technologies based on GaN and related materials, have achieved great developments in recent years. New GaN-based devices such as UV detectors, fast p-HEMT and microwave devices are developed far more superior than other semiconductor materials-based devices.Written by renowned experts, the review chapters in this book cover the most important topics and achievements in recent years, discuss progress made by different groups, and suggest future directions. Each chapter also describes the basis of theory and experiment.This book is an invaluable resource for device design and processing engineers, material growers and evaluators, postgraduates and scientists as well as newcomers in the GaN field.