*One reason for this is because many practical problems can be modeled and then efficiently solved using combinatorial theory.*

Skip to content
# Recent Advances in Algorithms and Combinatorics

Excellent authors, such as Lovasz, one of the five best combinatorialists in the world; Thematic linking that makes it a coherent collection; Will appeal to a variety of communities, such as mathematics, computer science and operations research
# Local Search in Combinatorial Optimization

Wiley-Interscience Series in Discrete Mathematics and Optimization Advisory Editors Ronald L. Graham Jan Karel Lenstra Robert E. Tarjan Discrete Mathematics and Optimization involves the study of finite structures and is one of the fastest growing areas in mathematics today. The level and depth of recent advances in the area and the wide applicability of its evolving techniques point to the rapidity with which the field is moving and presage the ever-increasing interaction between it and computer science. The Series provides a broad coverage of discrete mathematics and optimization, ranging over such fields as combinatorics, graph theory, enumeration, mathematical programming and the analysis of algorithms, and including such topics as Ramsey theory, transversal theory, block designs, finite geometries, Polya theory, graph and matroid algorithms, network flows, polyhedral combinatorics and computational complexity. The Wiley-Interscience Series in Discrete Mathematics and Optimization will be a substantial part of the record in this extraordinary development. Recent title in the Series: Theory and Algorithms for Linear Optimization: An Interior Point Approach C. Roos, T. Terlaky Delft University of Technology, The Netherlands and J.-Ph. Vial University of Geneva, Switzerland Linear Optimization (LO) is one of the most widely taught and fast developing techniques in mathematics, with applications in many areas of science, commerce and industry. The dramatically increased interest in the subject is due mainly to advances in computer technology and to the development of Interior Point Methods (IPM) for LO. This book provides a unified presentation of the field by way of an interior point approach to both the theory of LO and algorithms for LO (design, covergence, complexity and asymptotic behaviour). A common thread throughout the book is the role of strictly complementary solutions, which play a crucial role in the interior point approach and distinguishes the new approach from the classical Simplex-based approach. The approach to LO in this book is new in many aspects. In particular the IPM based development of duality theory is surprisingly elegant. The algorithmic parts of the book contain a complete discussion of many algorithmic variants, including predictor-corrector methods, partial updating, higher order methods and sensitivity and parametric analysis. The comprehensive and up-to-date coverage of the subject, together with the clarity of presentation, ensures that this book will be an invaluable resource for researchers and professionals who wish to develop their understanding of LOs and IPMs . Numerous exercises are provided to help consolidate understanding of the material and more than 45 figures are included to illustrate the characteristics of the algorithms. A general understanding of linear algebra and calculus is assumed and the preliminary chapters provide a self-contained introduction for readers who are unfamiliar with LO methods. These chapters will also be of interest for readers who wish to take a fresh look at the topics. 1997
# Combinatorial Optimization

This comprehensive textbook on combinatorial optimization places special emphasis on theoretical results and algorithms with provably good performance, in contrast to heuristics. It is based on numerous courses on combinatorial optimization and specialized topics, mostly at graduate level. This book reviews the fundamentals, covers the classical topics (paths, flows, matching, matroids, NP-completeness, approximation algorithms) in detail, and proceeds to advanced and recent topics, some of which have not appeared in a textbook before. Throughout, it contains complete but concise proofs, and also provides numerous exercises and references. This sixth edition has again been updated, revised, and significantly extended. Among other additions, there are new sections on shallow-light trees, submodular function maximization, smoothed analysis of the knapsack problem, the (ln 4+ɛ)-approximation for Steiner trees, and the VPN theorem. Thus, this book continues to represent the state of the art of combinatorial optimization.
# Handbook of Approximation Algorithms and Metaheuristics

Handbook of Approximation Algorithms and Metaheuristics, Second Edition reflects the tremendous growth in the field, over the past two decades. Through contributions from leading experts, this handbook provides a comprehensive introduction to the underlying theory and methodologies, as well as the various applications of approximation algorithms and metaheuristics. Volume 1 of this two-volume set deals primarily with methodologies and traditional applications. It includes restriction, relaxation, local ratio, approximation schemes, randomization, tabu search, evolutionary computation, local search, neural networks, and other metaheuristics. It also explores multi-objective optimization, reoptimization, sensitivity analysis, and stability. Traditional applications covered include: bin packing, multi-dimensional packing, Steiner trees, traveling salesperson, scheduling, and related problems. Volume 2 focuses on the contemporary and emerging applications of methodologies to problems in combinatorial optimization, computational geometry and graphs problems, as well as in large-scale and emerging application areas. It includes approximation algorithms and heuristics for clustering, networks (sensor and wireless), communication, bioinformatics search, streams, virtual communities, and more. About the Editor Teofilo F. Gonzalez is a professor emeritus of computer science at the University of California, Santa Barbara. He completed his Ph.D. in 1975 from the University of Minnesota. He taught at the University of Oklahoma, the Pennsylvania State University, and the University of Texas at Dallas, before joining the UCSB computer science faculty in 1984. He spent sabbatical leaves at the Monterrey Institute of Technology and Higher Education and Utrecht University. He is known for his highly cited pioneering research in the hardness of approximation; for his sublinear and best possible approximation algorithm for k-tMM clustering; for introducing the open-shop scheduling problem as well as algorithms for its solution that have found applications in numerous research areas; as well as for his research on problems in the areas of job scheduling, graph algorithms, computational geometry, message communication, wire routing, etc.
# Parameterized Algorithms

This comprehensive textbook presents a clean and coherent account of most fundamental tools and techniques in Parameterized Algorithms and is a self-contained guide to the area. The book covers many of the recent developments of the field, including application of important separators, branching based on linear programming, Cut & Count to obtain faster algorithms on tree decompositions, algorithms based on representative families of matroids, and use of the Strong Exponential Time Hypothesis. A number of older results are revisited and explained in a modern and didactic way. The book provides a toolbox of algorithmic techniques. Part I is an overview of basic techniques, each chapter discussing a certain algorithmic paradigm. The material covered in this part can be used for an introductory course on fixed-parameter tractability. Part II discusses more advanced and specialized algorithmic ideas, bringing the reader to the cutting edge of current research. Part III presents complexity results and lower bounds, giving negative evidence by way of W[1]-hardness, the Exponential Time Hypothesis, and kernelization lower bounds. All the results and concepts are introduced at a level accessible to graduate students and advanced undergraduate students. Every chapter is accompanied by exercises, many with hints, while the bibliographic notes point to original publications and related work.
# Combinatorial Optimization

This book constitutes the thoroughly refereed post-conference proceedings of the 4th International Symposium on Combinatorial Optimization, ISCO 2016, held in Vietri sul Mare, Italy, in May 2016. The 38 revised full papers presented in this book were carefully reviewed and selected from 98 submissions. They present original research on all aspects of combinatorial optimization, such as algorithms and complexity; mathematical programming; operations research; stochastic optimization; and graphs and combinatorics.
# Local Search in Combinatorial Optimization

Wiley-Interscience Series in Discrete Mathematics and Optimization Advisory Editors Ronald L. Graham Jan Karel Lenstra Robert E. Tarjan Discrete Mathematics and Optimization involves the study of finite structures and is one of the fastest growing areas in mathematics today. The level and depth of recent advances in the area and the wide applicability of its evolving techniques point to the rapidity with which the field is moving and presage the ever-increasing interaction between it and computer science. The Series provides a broad coverage of discrete mathematics and optimization, ranging over such fields as combinatorics, graph theory, enumeration, mathematical programming and the analysis of algorithms, and including such topics as Ramsey theory, transversal theory, block designs, finite geometries, Polya theory, graph and matroid algorithms, network flows, polyhedral combinatorics and computational complexity. The Wiley-Interscience Series in Discrete Mathematics and Optimization will be a substantial part of the record in this extraordinary development. Recent title in the Series: Theory and Algorithms for Linear Optimization: An Interior Point Approach C. Roos, T. Terlaky Delft University of Technology, The Netherlands and J.-Ph. Vial University of Geneva, Switzerland Linear Optimization (LO) is one of the most widely taught and fast developing techniques in mathematics, with applications in many areas of science, commerce and industry. The dramatically increased interest in the subject is due mainly to advances in computer technology and to the development of Interior Point Methods (IPM) for LO. This book provides a unified presentation of the field by way of an interior point approach to both the theory of LO and algorithms for LO (design, covergence, complexity and asymptotic behaviour). A common thread throughout the book is the role of strictly complementary solutions, which play a crucial role in the interior point approach and distinguishes the new approach from the classical Simplex-based approach. The approach to LO in this book is new in many aspects. In particular the IPM based development of duality theory is surprisingly elegant. The algorithmic parts of the book contain a complete discussion of many algorithmic variants, including predictor-corrector methods, partial updating, higher order methods and sensitivity and parametric analysis. The comprehensive and up-to-date coverage of the subject, together with the clarity of presentation, ensures that this book will be an invaluable resource for researchers and professionals who wish to develop their understanding of LOs and IPMs . Numerous exercises are provided to help consolidate understanding of the material and more than 45 figures are included to illustrate the characteristics of the algorithms. A general understanding of linear algebra and calculus is assumed and the preliminary chapters provide a self-contained introduction for readers who are unfamiliar with LO methods. These chapters will also be of interest for readers who wish to take a fresh look at the topics. 1997
# Algorithms and Computation

This book constitutes the refereed proceedings of the 23rd International Symposium on Algorithms and Computation, ISAAC 2012, held in Taipei, Taiwan, in December 2012. The 68 revised full papers presented together with three invited talks were carefully reviewed and selected from 174 submissions for inclusion in the book. This volume contains topics such as graph algorithms; online and streaming algorithms; combinatorial optimization; computational complexity; computational geometry; string algorithms; approximation algorithms; graph drawing; data structures; randomized algorithms; and algorithmic game theory.
# Approximation Algorithms and Semidefinite Programming

Semidefinite programs constitute one of the largest classes of optimization problems that can be solved with reasonable efficiency - both in theory and practice. They play a key role in a variety of research areas, such as combinatorial optimization, approximation algorithms, computational complexity, graph theory, geometry, real algebraic geometry and quantum computing. This book is an introduction to selected aspects of semidefinite programming and its use in approximation algorithms. It covers the basics but also a significant amount of recent and more advanced material. There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms. This book follows the “semidefinite side” of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms.
# Combinatorial Optimization and Applications

This book constitutes the refereed proceedings of the 7th International Conference on Combinatorial Optimization and Applications, COCOA 2013, held in Chengdu, China, in December 2013. The 36 full papers presented were carefully reviewed and selected from 72 submissions. The papers feature original research in the areas of combinatorial optimization and its applications. In addition to theoretical results there are reports on experimental and applied research of general algorithmic interest.
# Polyhedral and Semidefinite Programming Methods in Combinatorial Optimization

# Handbook of Graph Theory Combinatorial Optimization and Algorithms

The fusion between graph theory and combinatorial optimization has led to theoretically profound and practically useful algorithms, yet there is no book that currently covers both areas together. Handbook of Graph Theory, Combinatorial Optimization, and Algorithms is the first to present a unified, comprehensive treatment of both graph theory and c
# Recent Advances in Algorithmic Differentiation

The proceedings represent the state of knowledge in the area of algorithmic differentiation (AD). The 31 contributed papers presented at the AD2012 conference cover the application of AD to many areas in science and engineering as well as aspects of AD theory and its implementation in tools. For all papers the referees, selected from the program committee and the greater community, as well as the editors have emphasized accessibility of the presented ideas also to non-AD experts. In the AD tools arena new implementations are introduced covering, for example, Java and graphical modeling environments or join the set of existing tools for Fortran. New developments in AD algorithms target the efficiency of matrix-operation derivatives, detection and exploitation of sparsity, partial separability, the treatment of nonsmooth functions, and other high-level mathematical aspects of the numerical computations to be differentiated. Applications stem from the Earth sciences, nuclear engineering, fluid dynamics, and chemistry, to name just a few. In many cases the applications in a given area of science or engineering share characteristics that require specific approaches to enable AD capabilities or provide an opportunity for efficiency gains in the derivative computation. The description of these characteristics and of the techniques for successfully using AD should make the proceedings a valuable source of information for users of AD tools.
# Algorithmic Applications in Management

This book constitutes the refereed proceedings of the First International Conference on Algorithmic Applications in Management, AAIM 2005, held in Xian, China in June 2005. The 46 revised full papers presented together with abstracts of 2 invited talks were carefully reviewed and selected from 140 submissions. Among the topics addressed are approximation, complexity, automatic timetabling, scheduling algorithms, game-theoretic algorithms, economic equilibrium computation, graph computations, network algorithms, computational geometry, combinatorial optimization, sequencing, network management, data mining, Knapsack problems, etc.
# Recent Advances in Evolutionary Computation for Combinatorial Optimization

Combinatorial optimisation is a ubiquitous discipline whose usefulness spans vast applications domains. The intrinsic complexity of most combinatorial optimisation problems makes classical methods unaffordable in many cases. To acquire practical solutions to these problems requires the use of metaheuristic approaches that trade completeness for pragmatic effectiveness. Such approaches are able to provide optimal or quasi-optimal solutions to a plethora of difficult combinatorial optimisation problems. The application of metaheuristics to combinatorial optimisation is an active field in which new theoretical developments, new algorithmic models, and new application areas are continuously emerging. This volume presents recent advances in the area of metaheuristic combinatorial optimisation, with a special focus on evolutionary computation methods. Moreover, it addresses local search methods and hybrid approaches. In this sense, the book includes cutting-edge theoretical, methodological, algorithmic and applied developments in the field, from respected experts and with a sound perspective.
# Handbook on Semidefinite Conic and Polynomial Optimization

Semidefinite and conic optimization is a major and thriving research area within the optimization community. Although semidefinite optimization has been studied (under different names) since at least the 1940s, its importance grew immensely during the 1990s after polynomial-time interior-point methods for linear optimization were extended to solve semidefinite optimization problems. Since the beginning of the 21st century, not only has research into semidefinite and conic optimization continued unabated, but also a fruitful interaction has developed with algebraic geometry through the close connections between semidefinite matrices and polynomial optimization. This has brought about important new results and led to an even higher level of research activity. This Handbook on Semidefinite, Conic and Polynomial Optimization provides the reader with a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization, and polynomial optimization. It contains a compendium of the recent research activity that has taken place in these thrilling areas, and will appeal to doctoral students, young graduates, and experienced researchers alike. The Handbook’s thirty-one chapters are organized into four parts: Theory, covering significant theoretical developments as well as the interactions between conic optimization and polynomial optimization; Algorithms, documenting the directions of current algorithmic development; Software, providing an overview of the state-of-the-art; Applications, dealing with the application areas where semidefinite and conic optimization has made a significant impact in recent years.
# Algorithmic Aspects in Information and Management

This book constitutes the refereed proceedings of the Second International Conference on Algorithmic Aspects in Information and Management, AAIM 2006, held in Hong Kong, China in June 2006. The 34 revised full papers presented together with abstracts of 2 invited talks were carefully reviewed and selected from 263 submissions. The papers cover topics from areas such as online scheduling, game and finance, data structures and algorithms, computational geometry, optimization, graph, and string.
# Surveys in Combinatorics 2011

This volume contains nine survey articles based on the invited lectures given at the 23rd British Combinatorial Conference, held at Exeter in July 2011. This biennial conference is a well-established international event, with speakers from all over the world. By its nature, this volume provides an up-to-date overview of current research activity in several areas of combinatorics, including extremal graph theory, the cyclic sieving phenomenon and transversals in Latin squares. Each article is clearly written and assumes little prior knowledge on the part of the reader. The authors are some of the world's foremost researchers in their fields, and here they summarise existing results and give a unique preview of the most recent developments. The book provides a valuable survey of the present state of knowledge in combinatorics. It will be useful to research workers and advanced graduate students, primarily in mathematics but also in computer science and statistics.
# Understanding and Using Linear Programming

The book is an introductory textbook mainly for students of computer science and mathematics. Our guiding phrase is "what every theoretical computer scientist should know about linear programming". A major focus is on applications of linear programming, both in practice and in theory. The book is concise, but at the same time, the main results are covered with complete proofs and in sufficient detail, ready for presentation in class. The book does not require more prerequisites than basic linear algebra, which is summarized in an appendix. One of its main goals is to help the reader to see linear programming "behind the scenes".
# 2019 20 MATRIX Annals

MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the ten programs held at MATRIX in 2019 and the two programs held in January 2020: · Topology of Manifolds: Interactions Between High and Low Dimensions · Australian-German Workshop on Differential Geometry in the Large · Aperiodic Order meets Number Theory · Ergodic Theory, Diophantine Approximation and Related Topics · Influencing Public Health Policy with Data-informed Mathematical Models of Infectious Diseases · International Workshop on Spatial Statistics · Mathematics of Physiological Rhythms · Conservation Laws, Interfaces and Mixing · Structural Graph Theory Downunder · Tropical Geometry and Mirror Symmetry · Early Career Researchers Workshop on Geometric Analysis and PDEs · Harmonic Analysis and Dispersive PDEs: Problems and Progress The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.