Superplasticity

This book combines the perspectives of materials science of Superplasticity, on the one hand, and those of design and mechanics, on the other, in order to provide a holistic view of materials, design, mechanics and performance which will ...

Superplasticity

This book combines the perspectives of materials science of Superplasticity, on the one hand, and those of design and mechanics, on the other, in order to provide a holistic view of materials, design, mechanics and performance which will lead to useful solutions of societal benefits, in addition to providing great intellectual challenges. After considering the experimental evidence for superplasticity in different classes of materials, the book discusses the physics-based models, along with their advantages and limitations. Then, the analyses for superplastic forming available in the framework of continuum mechanics, finite element analysis and numerical simulations are presented. Finally, the authors highlight some successful industrial applications. This book is recommended as a text book for courses on Superplasticity and as supplementary use for courses on Materials Processing, Manufacturing, High Temperature Deformation, Nanotechnology and Mechanical Behavior of Materials. Persons working in Department of Materials Science and Engineering, Physics, Mechanics, Mechanical Engineering, Aerospace Engineering, Metallurgy, Ceramics and Geo-sciences are likely to find the book to be useful. It is also recommended as a reference source for practicing engineers involved in the design, processing and manufacture of industrial components, which exploit the unique properties associated with superplastic materials.

Superplastic Flow

Common Basis for a Ubiquitous Phenomenon K.A. Padmanabhan, R.A. Vasin, F.U. Enikeev. The ' Engineering Materials ' series provides topical information on innovative structural and functional materials with applications in mechanical ...

Superplastic Flow

The present book aims at the following: - To outline briefly the techniques of mechanics of solids, particularly as it applies to strain rate sensitive materials, - to assess the present level of investigations on the mechanical behaviour of superplastics, - to formulate the main issues and challenges in mechanics of superplasticity, - to analyse the mathematical models/constitutive equations for superplastic flow from the viewpoint of mechanics, - to review the models of superplastic metal working processes, - to indicate with examples possible new results that can be obtained using the methods of mechanics of solids. It is intended for a variety of readers who may be interested in the phenomenon of superplasticity for different reasons: materials scientists and physicists working in educational institutions and R&D units, those who wish to work on the applications of superplasticity, engineers in industry, students at senior undergraduate and postgraduate levels and those who wish to understand the phenomenology and mechanics of superplasticity without involvement in actual research. A reader who has exposure to standard differential and integral calculus and elementary tensor calculus at a level taught to senior undergraduate students at a technical university should have no difficulty in following the treatments. The analytical procedures are explained in an Appendix with simple examples.

Trends and Opportunities in Materials Research

Physical aging to alter the free volume distribution in glassy solids is an important and ubiquitous phenomenon ... engineering of structural polymers is the difficulty in predicting long - term mechanical properties on the basis of ...

Trends and Opportunities in Materials Research


Revue Suisse D hydrologie

Hydrographie, Hydrobiologie, Fischereiwissenschaft, Abwassereinigung.

Revue Suisse D hydrologie

Hydrographie, Hydrobiologie, Fischereiwissenschaft, Abwassereinigung.